
Er

 NavSpark Programmer Guide
Rev. 0.4

December 14, 2015

2

Table of Contents
1. Introduction .. 4

2. Programmer Guide .. 4

2.1 Overview ... 4

2.2 Using the NavSpark API ... 5

3. NavSpark API Reference .. 6

3.1 Data Type .. 6

3.2 API List ... 7

3.3 Descriptions to API .. 8

3.3.1 GNSSParam .. 8

3.2.2 GNSS ... 17

3.3.3 GNSSDate ... 23

3.3.4 GNSSTime ... 28

3.3.5 GNSSLocation ... 35

3.3.6 GNSSAltitude .. 40

3.3.7 GNSSGeoSeparation ... 45

3.3.8 GNSSDOP .. 51

3.3.9 GNSSSpeed ... 55

3.3.10 GNSSCourse.. 59

3.3.11 GNSSSatellites .. 62

3.3.12 GNSSTimeStamp .. 72

3.3.13 Timer .. 87

3.3.14 SPI_MasterSlave ... 96

3.3.15 SPIClass ... 117

3.3.16 TwoWire_MasterSlave ... 125

3.3.17 TwoWire ... 147

3.3.18 HardwareSerial ... 162

3.3.19 Analog .. 176

3.3.20 Digital ... 182

3.3.21 SDClass ... 191

3

3.3.22 File .. 199

4. Introduction to SPI and 2-wireSlavesModes ... 211

4.1 SPI Slave .. 211

4.2 NavSpark as a 2-wire slave .. 213

5. Structure Reference .. 215

6. Define Reference... 215

4

1. Introduction

This manual is intended for users who wish to build application based on the NavSpark development platform
using the Arduino IDE. This manual provides an introduction on how NavSpark works and available APIs. As
both GNSS mode (LEON3 with GNSS Library) and MCU mode (LEON3 without GNSS Library) are included in the
board manager, MCU mode usage is also described.

2. Programmer Guide

2.1 Overview

Below chart provides an idea about the procedure flow of program running on NavSpark.

5

 After power on, NavSpark will do necessary initializations for the 32-bit LEON3 core, and arrange all
software resources including stack/heap, etc.

 Then NavSpark performs further initializations in the “init()” which is defined in “wiring.c”, currently
NavSpark initializes the ISR for UART/2-wire/SPI here. It is possible for users to add their code for any other
system level initialization in this function, but need to do it with care.

 The next step for NavSpark is to execute the user-defined “setup()” which is auto-generated in sketch by
Arduino IDE. The “GnssConf.init()” must be called at here for NavSpark and users may add their code here
to setup all necessary tasks for later application. After leaving “setup()”, NavSpark will enter an endless
loop

 “gnss_process()” is divided into two parts, GNSS mode and MCU mode. NavSpark will update the GNSS
information at certain frequency which can be change by “GNSSParam::setUpdateRate()” and return TRUE
in case update is done this time. The default update frequency is 1Hz and can be changed if users choose
to link the GNSS library, the “gnss_process()” maintains returning TRUE every 1 second if users choose to
link MCU mode.

 There is one function “task_called_after_GNSS_update()” which is defined in “main.cpp” will be executed
in case of GNSS update is done. Users may provide their own “task_called_after_GNSS_update()” in sketch
to replace the default one. Normally this function is used to process the most recent GNSS navigation
result obtained from calling “gnss_process()”.

 “gnss_uart_process()” is divided into two parts, GNSS mode and MCU mode. NavSpark handles the NMEA
messages and prints them out via UART1, it also process the binary commands received over UART1.
UART1 is connected to micro USB through a UART-to-USB bridge chip. In MCU mode, UART1 is open for
users to use.

 The last function in loop is “loop()” which is auto-generated in sketch by Arduino IDE. It is the place for
users to add their normal routines in “loop()”. After leaving “loop()”, NavSpark jumps to “gnss_process()”
and new cycle begins.

2.2 Using the NavSpark API

Basically NavSpark is an Arduino-based platform and most of the APIs are packaged as member functions of
C++ class. To use those member functions, the associated class objects must be instantiated prior to using
them. For the functions written in C users can use them directly.

6

3. NavSpark API Reference

3.1 Data Type

U08

 unsigned char (8-bit unsigned integer) BYTE
UCHAR
uint8_t
S08 signed char (8-bit signed integer) CHAR
U16

 unsigned short / unsigned short int (16-bit unsigned integer)
USHORT
WORD
WCHAR
uint16_t
S16 signed short / short (16-bit signed integer) SHORT
U32

 unsigned int / unsigned long/ unsigned long int (32-bit unsigned
integer)

UINT
ULONG
DWORD
size_t
uint32_t
S32

 long / signed long int (32-bit signed interger) INT
LONG
F32 float (32-bit float precision)
D64 double (64-bit double precision)
U64 unsigned long long int (64-bit unsigned long integer)
S64 Signed long long int (64-bit signed long integer)

7

For more detail information, please see “stdint.h” and “st_type.h”.

Base Example Formatter Comment

10 (decimal) 123 none

2 (binary) B1111011 leading 'B' only works with 8 bit values (0 to
255)

8 (octal) 0173 leading "0" characters 0-7 valid

16 (hexadecimal) 0x7B leading "0x" characters 0-9, A-F, a-f valid

LEON3 BCC can’t support binary constant.

3.2 API List

 3.3.1 GNSSParam
 3.3.2 GNSS
 3.3.3 GNSSDate
 3.3.4 GNSSTime
 3.3.5 GNSSLocation
 3.3.6 GNSSAltitude
 3.3.7 GNSSGeoSeparation
 3.3.8 GNSSDOP
 3.3.9 GNSSSpeed
 3.3.10 GNSSCourse
 3.3.11 GNSSSatellites
 3.3.12 GNSSTimeStamp
 3.3.13 Timer
 3.3.14 SPI_MasterSlave
 3.3.15 SPIClass
 3.3.16 TwoWire_MasterSlave
 3.3.17 TwoWire
 3.3.18 HardwareSerial
 3.3.19 Analog
 3.3.20 Digital
 3.3.21 SDClass
 3.3.22 File

8

3.3 Descriptions to API

3.3.1 GNSSParam

GNSSParam

 Class for the default values settings of GNSS receiver.

Public Member Functions
 void setDefault(void)
 void setNavMode(uint8_t mode)
 void setUpdateRate(uint8_t rate)
 void setDopMaskMode(uint8_t mode)
 void setPdopMask(float pdop)
 void setHdopMask(float hdop)
 void setGdopMask(float gdop)
 void init(void)
 bool init_done(void)

Remarks
 GnssConf, GNSSParam class, is pre-instantiated in “GNSS.cpp”. User can use this object to configure some

 parameters of the GNSS receiver.

9

GNSSParam::setDefault()

 All default values of GNSS receiver are set by this function.

Syntax
 #include “GNSS.h”
 GnssConf.setDefault();
Parameters
 None
Returns
 None
Remarks

 This function is already called in the constructor of GNSSParam and it is unnecessary for user to call it manually.

10

GNSSParam::setNavMode()

 It allows user to select navigation mode.

Syntax
 #include “GNSS.h”
 GnssConf.setNavMode(mode);
Parameters
 uint8_t mode

 The allowed values arelisted below.
 STGNSS_NAV_MODE_AUTO (default)
 STGNSS_NAV_MODE_PEDESTRIAN
 STGNSS_NAV_MODE_CAR
 STGNSS_NAV_MODE_MARINE
 STGNSS_NAV_MODE_BALLOON
 STGNSS_NAV_MODE_AIRBORNE
Returns
 None
Remarks

 This function won’t change the GNSS receiver setting until init() is executed.

 Unless specifically knowing which application scenario applies, otherwise use AUTO mode for default.

 Airborne mode can be used for high-dynamics application, not necessarily for airborne use. Little filtering done
 and has the least lag among all modes. If it’s used in signal fluctuating non-open sky environments, it might
 result in poor performance. It’s useful mainly under open sky.

11

GNSSParam::setDopMaskMode()

 It allows selection of the DOP (Dilution of Precision) mask criteria for GNSS receiver.

Syntax
 #include “GNSS.h”
 GnssConf.setDopMaskMode(mode);
Parameters
 uint8_tmode
 TheDOP mode for GNSS receiver. The allowedvalues arelisted in below.
 STGNSS_DOP_MASK_DISABLE
 STGNSS_DOP_MASK_AUTO (default)
 STGNSS_DOP_MASK_PDOP
 STGNSS_DOP_MASK_HDOP
 STGNSS_DOP_MASK_GDOP
Returns
 None
Remarks

 STGNSS_DOP_MASK_DISABLE：GNSS receiver will ignore DOP mask check and always give valid fix in
case of enough satellites are used for fix.

 STGNSS_DOP_MASK_AUTO：GNSS receiver will apply PDOP mask for 3-D fix and HDOP mask for 2-D
fix.

 STGNSS_DOP_MASK_PDOP：GNSS receiver will apply PDOP mask only.
 STGNSS_DOP_MASK_HDOP：GNSS receiver will apply HDOP mask only.
 STGNSS_DOP_MASK_GDOP：GNSS receiver will apply GDOP mask only.

 This function won’t change the GNSS receiver DOP mask setting immediately until init() is executed. For given
 selected DOP mask criteria, valid position fix will be generated when the corresponding DOP value computed is
 below the selected DOP mask threshold; otherwise no-fix flag will be generated.

 2D-fix is when getting navigation solution using 3 satellites signals.

 3D-fix is when getting navigation solution using 4 or more satellites signals.

12

GNSSParam::setPdopMask()

 It allows user to set the PDOP (Position DOP) mask value for GNSS receiver.

Syntax
 #include “GNSS.h”
 GnssConf.setPdopMask(value); default 30.0
Parameters
 float value
 The PDOP mask value for GNSS receiver. The range of allowed values are from 0.5 to 30.0 in 0.1 step, the PDOP

 mask setting of GNSS receiver won’t be changed in case an invalid value is given.
Returns
 None
Remarks

 This function won’t change PDOP mask setting of the GNSS receiver immediately until init() is executed. If PDOP
 mask is selected by setDOPMaskMode() and geometry of the satellites used to form navigation solution gives a
 PDOP value higher than the PDOP mask value, then no-fix flag is generated.

13

GNSSParam::setHdopMask()

 It allows user to set the HDOP (Horizontal DOP) mask value for GNSS receiver.
Syntax
 #include “GNSS.h”
 GnssConf.setHdopMask(value); default 30.0
Parameters
 float value
 The HDOP mask value for GNSS receiver. The range of allowed values are from 0.5 to 30.0 in 0.1 step, the HDOP

 mask setting of GNSS receiver won’t be changed in case an invalid value is given.
Returns
 None
Remarks

 This function won’t change HDOP mask setting of GNSS receiver immediately until init() is executed. If HDOP
 mask is selected by setDOPMaskMode() and geometry of the satellites used to form navigation solution gives an
 HDOP value higher than the HDOP mask value, then no-fix flag is generated.

14

GNSSParam::setGdopMask()

 It allows user to set the GDOP (Geometric DOP) mask value for GNSS receiver.

Syntax
 #include “GNSS.h”
 GnssConf.setGdopMask(value); default 30.0
Parameters
 float value
 The GDOP mask value for GNSS receiver. The range of allowed values are from 0.5 to 30.0 in 0.1 step, the GDOP

 mask setting of GNSS receiver won’t be changed in case an invalid value is given.
Returns
 None
Remarks

 This function won’t change the GDOP setting of GNSS receiver immediately until init() is executed. If GDOP mask
 is selected by setDOPMaskMode() and geometry of the satellites used to form PVT solution gives a GDOP value
 higher than the GDOP mask value, then no-fix flag is generated.

15

GNSSParam::init()

 It performs the initialization for GNSS receiver with default values or the values changed by user.

Syntax
 #include “GNSS.h”
 GnssConf.init();
Parameters
 None
Returns
 None
Remarks

 This function does the actual changes to the settings of GNSS receiver and perform all necessary initializations
 including initialization for gnss_process() used in main.cpp. This function must be called when using both GNSS
 and MCU library, and it is RECOMMENDED to place this function at the beginning of setup() which is generated
 in sketch.

16

GNSSParam::init_done()

 It allows user to check if GNSS receiver initialization is done or not.

Syntax
 #include “GNSS.h”
 bool result = GnssConf.init_done();
Parameters
 None
Returns
 Boolean TRUE if the initialization for GNSS receiver was done or otherwise FALSE.
Remarks

 None

17

3.2.2 GNSS

GNSS

Class for key functions of GNSS receiver.

Public Member Functions
 GNSS(void)
 void update(void)
 bool isUpdated(void)
 uint8_t fixMode(void)
 static double distanceBetween(double lat1, double lon1, double lat2, double lon2)
 static double courseTo(double lat1, double lon1, double lat2, double lon2)

Public Members
 GNSSDate date
 GNSSTime time
 GNSSLocation location
 GNSSAltitude altitude
 GNSSSpeed speed
 GNSSCourse course
 GNSSSatellites satellites
 GNSSTimeStamp timestamp

Remarks
There is one GNSS object, GnssInfo, which is pre-instantiated in “GNSS.cpp” when user selects “Leon3 with GNSS
library” in Processor menu. User can use this object to retrieve navigation solution and access related operations.

18

GNSS::update()

 This function extracts navigation solution from GNSS kernel and updates to private space of members.

Syntax
 #include “GNSS.h”
 GnssInfo.update();
Parameters
 None
Returns
 None
Remarks

 This function can be called at any time to extract navigation solution from GNSS receiver. Normally it is placed

 inside “task_called_after_GNSS_update()” to have the navigation result ready for application use, such as

 generating NMEA messages.

19

GNSS::isUpdated()

 This function checks if GNSS receiver information has been updated.
Syntax
 #include “GNSS.h”
 bool result = GnssInfo.isUpdated();
Parameters
 None
Returns
 Boolean TRUE is returned if GNSS receiver has new information, either valid fix or invalid fix; otherwise boolean
 FALSE is returned.
Remarks
 None

20

GNSS::fixMode()

 This function is used to get the fix status of GNSS receiver.

Syntax
 #include “GNSS.h”
 uint8_t result = GnssInfo.fixMode();
Parameters
 None
Returns

 An 8-bit unsigned integer to indicate status of GNSS fix.
 0 : non-fix.
 1 : prediction
 2 : 2D fix
 3 : 3D fix
 4 : differential mode

Remarks

-

21

GNSS::distanceBetween()

 This function calculates the distance between two separate locations.
Syntax
 #include “GNSS.h”
 double distance = GnssInfo.distanceBetween(lat1, lon1, lat2, lon2);
Parameters
 double lat1
 The 1st argument is location 1 latitude in double precision floating point
 double long1
 The 2nd argument is location 1 longitude in double precision floating point
 double lat2
 The 3rd argument is location 2 latitude in double precision floating point
 double long2
 The 4th argument is location 2 longitude in double precision floating point
Returns

 A double-precision floating point value that indicates the distance between the two locations in meters.
Remarks

 The input arguments are in degrees.
 Since the earth is not ideal sphere, this calculation result from this function may have round error up to 0.5%.

22

GNSS::courseTo()

 This function calculates the course from location 1 to location 2.

Syntax
 #include “GNSS.h”
 double course = GnssInfo.courseTo(lat1, lon1, lat2, lon2);
Parameters
 double lat1
 The 1st argument is location 1 latitude in double precision floating point
 double long1
 The 2nd argument is location 1 longitude in double precision floating point
 double lat2
 The 3rd argument is location 2 latitude in double precision floating point
 double long2
 The 4th argument is location 2longitude in double precision floating point
Returns

 A double-precision floating point value indicates the course in degrees from location 1 to location 2. Degree 0
 means the course is toward north and 270 is toward west.

Remarks
 The input arguments are in degrees.
 Since the earth is not ideal sphere, this calculation result from this function may be off true direction by a tiny
 fraction.

23

3.3.3 GNSSDate

GNSSDate

Class to store date information of GNSS receiver, including years, months and days.

Public Member Functions
 void update(uint16_t year, uint8_t month, uint8_t day)
 uint16_t year(void)
 uint8_t month(void))
 uint8_t day(void)
 uint16_t formatString(char* str)

Remarks
 None

24

GNSSDate::update()

 This function copies years, months and days given as arguments to its private internal space.

Syntax
 #include “GNSS.h”
 GnssInfo.date.update(year, month, day);
Parameters
 uint16_t year
 The 1st argument is the years in AD. This function will abort in case year given is less than 1983.
 uint8_t month
 The 2nd argument is the months. This function will abort in case month given is larger than 12 or equal to zero.
 uint8_t day
 The 3rd argument is the days. This function will abort in case day given is larger than 31 or equal to zero.
Returns
 None
Remarks

 In class GNSS, there is a pre-defined class member, date, which type is GNSSDate and date.update() is called

 inside GNSS::update() to set the date information obtained from GNSS receiver.

25

GNSSDate::year()

 This function returns the years in AD which was set by GNSSDate::update().

Syntax
 #include “GNSS.h”
 uint16_t my_year = GnssInfo.date.year();
Parameters
 None
Returns
 A 16-bit unsigned integer representing the years in AD.
Remarks
 None

26

GNSSDate::month()

 This function returns the months which was set by GNSSDate::update().

Syntax
 #include “GNSS.h”
 uint8_t my_month = GnssInfo.date.month();
Parameters
 None
Returns
 An 8-bit unsigned integer representing the months, ranges from 1 ~ 12.
Remarks
 None

27

GNSSDate::day()

 This function returns the days which was set by GNSSDate::update().

Syntax
 #include “GNSS.h”
 uint8_t my_day = GnssInfo.date.day();
Parameters
 None
Returns
 An 8-bit unsigned integer representing the days, ranges from 1 ~ 31.
Remarks
 None

28

3.3.4 GNSSTime

GNSSTime

A Class to store information of GNSS time including hour, minute and second.

Public Member Functions
 void update(uint8_t hour, uint8_t min, float second)
 uint8_t hour(void)
 uint8_t minute(void)
 uint8_t second(void)
 uint8_t centisecond(void)
 uint16_t formatString(char* str)

Remarks
 None

29

GNSSTime::update()

 This function copies hours, minutes and seconds given as arguments to its private internal space.

Syntax
 #include “GNSS.h”
 GnssInfo.time.update(hour, min, sec);
Parameters
 uint8_t hour
 The 1st argument is the value of hours in 24-hour clock system. This function will abort in case hour given is

 larger than 23.
 uint8_t min
 The 2nd argument is the value for minutes. This function will abort in case min given is larger than 59.
 float sec
 The 3rd argument is the value for seconds. This function will abort in case sec given is not less than 60.
Returns
 None
Remarks

 In class GNSS, there is a pre-defined class member, time, which type is GNSSTime and the time.update() is called

 inside GNSS::update() to set the time information obtained from GNSS receiver.

30

GNSSTime::hour()

 This function returns the hours which was set by GNSSTime::update().

Syntax
 #include “GNSS.h”
 uint8_t my_hour = GnssInfo.time.hour();
Parameters
 None
Returns
 An 8-bit unsigned integer representing the hours, ranges from 0 ~ 23.
Remarks

 None

31

GNSSTime::minute()

 This function returns the minutes which was set by GNSSTime::update().
Syntax
 #include “GNSS.h”
 uint8_t my_minute = GnssInfo.time.minute();
Parameters
 None
Returns
 An 8-bit unsigned integer representing the minutes, ranges from 0 ~ 59.
Remarks

 None

32

GNSSTime::second()

 This function returns the integer part of seconds which was set by GNSSTime::update().

Syntax
 #include “GNSS.h”
 uint8_t my_second = GnssInfo.time.second();
Parameters
 None
Returns

 An 8-bit unsigned integer representing the integer part of seconds,ranging from 0 ~ 59.
Remarks

 None

33

GNSSTime::centisecond()

 This function returns the fractional part of seconds which was set by GNSSTime::update().

Syntax
 #include “GNSS.h”
 uint16_t my_centi_second = GnssInfo.time.centisecond();
Parameters
 None
Returns

 A 16-bit unsigned integer representing the fractional part of second multiplies by 100, ranges from 0 ~ 99.
Remarks

 Following example gives a more clear description for how to use GNSSTime.

 GnssInfo.time.update(13, 45, 29.145); /* save 13:45:29.145 */

 GnssInfo.time.hour(); /* returns 13 */

 GnssInfo.time.minute(); /* returns 45 */

 GnssInfo.time.second(); /* returns 29 */

 GnssInfo.time.centisecond(); /* returns 14 */

34

GNSSTime::formatString()

 This function converts the time saved by GNSSTime::update() to a string in a pre-defined format.

Syntax
 #include “GNSS.h”
 uint16_tsizeOfString = GnssInfo.time.formatString(str);
Parameters
 char* str
 An address pointer points to a character buffer which will contain the string.
Returns

 A 16-bit unsigned integer which indicate the size of string after function call.
Remarks

 Following example gives a more clear description for how to use GNSSTime.

 char str[32];

 GnssInfo.time.update(13, 45, 29.145); /* save 13:45:29.145*/

 uint16_tsizeOfString = GnssInfo.time.formatString(str);

 /* -- now we have

 sizeOfString =>11

 str =>“01:45:29 PM”

 */

35

3.3.5 GNSSLocation

GNSSLocation

Class to store the information of GNSS position, including latitude and longitude.

Public Member Functions
 void update(double lat, double long)
 double latitude(void)
 double longitude(void)
 uint16_t latitude_formatString(char* str)
 uint16_t longitude_formatString(char* str)

Remarks
 None

36

GNSSLocation::update()

 This function copies latitude and longitude given as arguments to its private internal space.

Syntax
 #include “GNSS.h”
 GnssInfo.location.update(lat, long);
Parameters
 double lat
 The 1st argument is the latitude in degrees with double precision. The allowed range is from -90 to +90.
 double long
 The 2nd argument is the longitude in degrees with double precision. The allowed range is from -180 to +180.
Returns

 None
Remarks

 In class GNSS, there is a pre-defined class member, location, which type is GNSSLocation and the

 location.update() is called inside GNSS::update() to set the latitude and longitude obtained from GNSS receiver.

37

GNSSLocation::latitude()

 This function returns the latitude which was set by GNSSLocation::update().

Syntax
 #include “GNSS.h”
 double my_latitude = GnssInfo.location.latitude();
Parameters
 None
Returns

 A double-precision float point value for latitude in degrees, within ±90°.
Remarks
 None

38

GNSSLocation::longitude()

 This function returns the longitude which was set by GNSSLocation::update().

Syntax
 #include “GNSS.h”
 double my_longitude = GnssInfo.location.longitude();
Parameters
 None
Returns

 A double-precision float point value for longitude in degrees, within ±180°.
Remarks
 None

39

GNSSLocation::latitude_formatString()

 This function converts the latitude saved by GNSSLocation::update() to a string in a pre-defined format.

Syntax
 #include “GNSS.h”
 uint16_t sizeOfString = GnssInfo.location.latitude_formatString(str);
Parameters
 char* str
 An address pointer points to a character buffer which will contain the string.
Returns

 A 16-bit unsigned integer which indicate the size of string.
Remarks

 See remarks of GNSSLocation::longitude_formatString() for more info.

40

3.3.6 GNSSAltitude

GNSSAltitude

A Class to store the information of mean sea level (MSL) altitude.

Public Member Functions
 void update(float altitude)
 float meters(void)
 float miles(void)
 float kilometers(void)
 float feet(void)

Remarks
 None

41

GNSSAltitude::update()

 This function copies the altitude given as argument to its private internal space.

Syntax
 #include “GNSS.h”
 GnssInfo.altitude.update(alt);
Parameters
 float alt
 A floating point value to specify the altitude in meters.
Returns

 None
Remarks

 In class GNSS, there is a pre-defined class member, altitude, which type is GNSSAltitude and the

 altitude.update() is called inside GNSS::update() to set the mean sea level (MSL) altitude in meters obtained

 from GNSS receiver.

42

GNSSAltitude::meters()

 This function returns the MSL altitude set by GNSSAltitude::update() in meters.

Syntax
 #include “GNSS.h”
 float my_altitude = GnssInfo.altitude.meters();
Parameters
 None
Returns

 A floating point value to indicate the altitude in meters.
Remarks

 None

43

GNSSAltitude::kilometers()

 This function returns the MSL altitude set by GNSSAltitude::update() in kilometers.
Syntax
 #include “GNSS.h”
 float my_altitude = GnssInfo.altitude.kilometers();
Parameters
 None
Returns

 A floating point value to indicate the altitude in kilometers.
Remarks

 None

44

GNSSAltitude::feet()

 This function returns the MSL altitude set by GNSSAltitude::update() in feet.

Syntax
 #include “GNSS.h”
 float my_altitude = GnssInfo.altitude.feet();
Parameters
 None
Returns

 A floating point value to indicate the altitude in feet.
Remarks

 None

45

3.3.7 GNSSGeoSeparation

GNSSGeoSeparation

A Class to store the information of geoid separation.

Public Member Functions
 void update(float meters)
 float meters(void)
 float miles(void)
 float kilometers(void)
 float feet(void)

Remarks
 None

46

GNSSGeoSeparation::update()

 This function copies the geoid separation given as argument to its private internal space.

Syntax
 #include “GNSS.h”
 GnssInfo. geoseperation.update(meter);
Parameters
 float meter
 A floating point value to specify the geoid separation in meters.
Returns

 None
Remarks

 In class GNSS, there is a pre-defined class member, altitude, which type is GNSSGeoSeparation and the

 geoseperation.update() is called inside GNSS::update() to set the geoid separation in meters obtained from

 GNSS receiver.

47

GNSSGeoSeparation::meters()

 This function returns the geoid separation set by GNSSGeoSeparation::update() in meters.

Syntax
 #include “GNSS.h”
 float local_separation = GnssInfo.geoseparation.meters();
Parameters
 None
Returns

 A floating point value to indicate the geoid separation in meters.
Remarks

 None

48

GNSSGeoSeparation::miles()

 This function returns the geoid separation set by GNSSGeoSeparation::update() in meters.

Syntax
 #include “GNSS.h”
 float local_separation = GnssInfo.geoseparation.miles();
Parameters
 None
Returns

 A floating point value to indicate the geoid separation in miles.
Remarks

 None

49

GNSSGeoSeparation::kilometers()

 This function returns the geoid separation set by GNSSGeoSeparation::update() in meters.

Syntax
 #include “GNSS.h”
 float local_separation = GnssInfo.geoseparation.kilometers();
Parameters
 None
Returns

 A floating point value to indicate the geoid separation in kilometers.
Remarks

 None

50

GNSSGeoSeparation::feet()

 This function returns the geoid separation set by GNSSGeoSeparation::update() in meters.

Syntax
 #include “GNSS.h”
 float local_separation = GnssInfo.geoseparation.feet();
Parameters
 None
Returns

 A floating point value to indicate the geoid separation in feet.
Remarks

 None

51

3.3.8 GNSSDOP

GNSSDOP

A Class to store the information of Dilution of Precision (DOP).

Public Member Functions
 float pdop(void)
 float hdop(void)
 float vdop(void)

Remarks
 None

52

GNSSDOP::pdop()

 This function returns current Position Dilution of Precision (PDOP).

Syntax
 #include “GNSS.h”
 float current_pdop = GnssInfo.dop.pdop();
Parameters
 None
Returns

 A floating point value to indicate current PDOP value.
Remarks

 None

53

GNSSDOP::hdop()

 This function returns current Horizontal Dilution of Precision (HDOP).

Syntax
 #include “GNSS.h”
 float current_hdop = GnssInfo.dop.hdop();
Parameters
 None
Returns

 A floating point value to indicate current HDOP value.
Remarks

 None

54

GNSSDOP::vdop()

 This function returns current Vertical Dilution of Precision (VDOP).

Syntax
 #include “GNSS.h”
 float current_vdop = GnssInfo.dop.vdop();
Parameters
 None
Returns

 A floating point value to indicate current VDOP value.
Remarks

 None

55

3.3.9 GNSSSpeed

GNSSSpeed

Class to store the information of speed.

Public Member Functions
 void update(float speed)
 float kph(void)
 float knots(void)
 float mph(void)

Remarks
 None

56

GNSSSpeed::update()

 This function copies the speed given as argument to its private internal space.

Syntax
 #include “GNSS.h”
 GnssInfo.speed.update(speed);
Parameters
 floatspeed
 A floating point value to specify the speed in knots.
Returns

 None
Remarks

 In class GNSS, there is a pre-defined class member, speed, which type is GNSSSpeed and the speed.update() is

 called inside GNSS::update() to set the speed in knots obtained from GNSS receiver.

57

GNSSSpeed::kph()

 This function returns the speed set by GNSSSpeed::update() in kilometers per hour.

Syntax
 #include “GNSS.h”
 float my_speed = GnssInfo.speed.kph();
Parameters
 None
Returns

 A floating point value to indicate the speed in kilometers per hour.
Remarks

 None

58

GNSSSpeed::mph()

 This function returns the speed set by GNSSSpeed::update() in miles per hour.

Syntax
 #include “GNSS.h”
 float my_speed = GnssInfo.speed.mph();
Parameters
 None
Returns

 A floating point value to indicate the speed in miles per hour.
Remarks

 None

59

3.3.10 GNSSCourse

GNSSCourse

Class to store the information of course heading.

Public Member Functions
 void update(float course)
 float deg(void)

Remarks
 None

60

GNSSCourse::update()

 This function copies the course in degree given as argument to its private internal space.

Syntax
 #include “GNSS.h”
 GnssInfo.course.update(deg);
Parameters
 floatdeg
 A floating point value to specify the course in degree. This function only accept degree if 0 ≤ deg < 360.
Returns

 None
Remarks

 In class GNSS, there is a pre-defined class member, course, which type is GNSSCourse and the course.update() is

 called inside GNSS::update() to set the course in degrees obtained from GNSS receiver.

61

GNSSCourse::deg()

 This function returns the course set by GNSSSpeed::update() in degree.

Syntax
 #include “GNSS.h”
 float my_course = GnssInfo.course.deg();
Parameters
 None
Returns

 A floating point value to indicate the course in degree.
Remarks

 None

62

3.3.11 GNSSSatellites

GNSSSatellites

Class to store the information of satellites seen by GNSS receiver.

Public Member Functions
 void update(PVT_DATA_T* pPvtData, SV_INFO_T* pSvInfo)
 uint16_t numGPSInView(uint16_t *prn)
 uint16_t numBD2InView(uint16_t *prn)
 uint16_t numGLNInView(uint16_t *prn)
 uint16_t numGPSInUse(uint16_t *prn)
 uint16_t numBD2InUse(uint16_t *prn)
 uint16_t numGLNInUse(uint16_t *prn)
 uint16_t elevation(uint8_t constellation, uint16_t prn)
 uint16_t azimuth(uint8_t constellation, uint16_t prn)
 uint16_t CNR(uint8_t constellation, uint16_t prn)

Remarks
 None

63

GNSSSatellites::numGPSInView()

 This function returns the number and PRN list for GPS satellites in view which was set by
 GNSSSatellites::update().

Syntax
 #include “GNSS.h”
 uint16_t num = GnssInfo.satellites.numGPSInView(prnList);
Parameters
 uint16_t*prnList
 An address pointer points to an array of unsigned 16-bit values with number of array elements equal to

 STGNSS_GPS_NCHAN which is defined in “sti_gnss_lib.h”. If this pointer is not NULL then this array will contain
 PRN listof in view GPS satellites determined by GNSS receiver.If a NULL pointer is given, then no PRN list will be
 returned.

Returns
 A 16-bit unsigned integer indicating number of in view GPS satellites determined by GNSS receiver.

Remarks
 The PRN in list may not be in order. Assumes there are totally 4 GPS satellites in view and their PRN are 1/3/5/7,

 the prnList[0] may be 5 and prnList[1] may be 1, and so on.

64

GNSSSatellites::numBD2InView()

 This function returns the number and PRN listforBeidou2 satellites in view which was set by
 GNSSSatellites::update().

Syntax
 #include “GNSS.h”
 uint16_t num = GnssInfo.satellites.numBD2InView(prnList);
Parameters
 uint16_t* prnList
 An address pointer points to an array of unsigned 16-bit values with number of array elements equal to

 STGNSS_BD2_NCHAN which is defined in “sti_gnss_lib.h”. If this pointer is not NULL then this array will contain
 the PRN listof in view Beidou2 satellites determined by GNSS receiver. If a NULL pointer is given, then no PRN list
 will be returned.

Returns
 A 16-bit unsigned integer indicating number of in view Beidou2 satellites determined by GNSS receiver.

Remarks
 None

65

GNSSSatellites::numGLNInView()

 This function returns the number and PRN list for GLONASS satellites in view which was set by
 GNSSSatellites::update().

Syntax
 #include “GNSS.h”
 uint16_t num = GnssInfo.satellites.numGLNInView(prnList);
Parameters
 uint16_t*prnList
 An address pointer points to an array of unsigned 16-bit values with number of array elementsequal to

 STGNSS_GLONASS_NCHAN which is defined in “sti_gnss_lib.h”. If this pointer is not NULL then this array will
 contain the PRN list for in view GLONASS satellites determined by GNSS receiver. If a NULL pointer is given, then
 no PRN list will be returned.

Returns
 A 16-bit unsigned integer indicating number of in view GLONASS satellites determined by GNSS receiver.

Remarks
 None

66

GNSSSatellites::numGPSInUse()

 This function returns the number of GPS satellites and their PRN list that is used in computing navigation
 solution.

Syntax
 #include “GNSS.h”
 uint16_t num = GnssInfo.satellites.numGPSInUse(prnList);
Parameters
 uint16_t*prnList
 An address pointer points to an array of unsigned 16-bit values with number of array elements equal to

 STGNSS_GPS_NCHAN which is defined in “sti_gnss_lib.h”. If this pointer is not NULL then this array will contain
 the PRN list for GPS satellites used for GNSS fix by GNSS receiver. If a NULL pointer is given, then no PRN list will
 be returned.

Returns

 A 16-bit unsigned integer to indicate the number of GPS satellites used by GNSS receiver in calculation GNSS fix.
 The number in use is less than or equal to the number in view.

Remarks
 None

67

GNSSSatellites::numBD2InUse()

 This function returns the number and PRN list forBeidou2 satellites used in computing navigation solution.

Syntax
 #include “GNSS.h”
 uint16_t num = GnssInfo.satellites.numBD2InUse(prnList);
Parameters
 uint16_t* prnList
 An address pointer points to an array of unsigned 16-bit values with number of array elements equal to

 STGNSS_BD2_NCHAN which is defined in “sti_gnss_lib.h”. If this pointer is not NULL then this array will contain
 the PRN list for Beidou2 satellites used for GNSS fix by GNSS receiver. If a NULL pointer is given, then no PRN list
 will be returned.

Returns
 A 16-bit unsigned integer to indicate the number of Beidou2 satellites used by GNSS receiver in calculation for
 GNSS fix. The number in use is less than or equal to the number in view.

Remarks
 None

68

GNSSSatellites::numGLNInUse()

 This function returns the number of GLONASS satellites used in computing navigation solution.

Syntax
 #include “GNSS.h”
 uint16_t num = GnssInfo.satellites.numGLNInUse(prnList);
Parameters
 uint16_t*prnList
 An address pointer points to an array of unsigned 16-bit values with number of array elements equal to

 STGNSS_GLONASS_NCHAN which is defined in “sti_gnss_lib.h”. If this pointer is not NULL then this array will
 contain the PRN list for GLONASS satellites used for GNSS fix by GNSS receiver. If a NULL pointer is given, then
 no PRN list will be returned.

Returns
 A 16-bit unsigned integer to indicate the number of GLONASS satellites used by GNSS receiver in calculation for
 GNSS fix. The number in use is less than or equal to the number in view.

Remarks
 None

69

GNSSSatellites::elevation()

 This function returns the elevation angle for the specified satellite.

Syntax
 #include “GNSS.h”
 uint16_t angle = GnssInfo.satellites.elevation(constellation, prn);
Parameters
 uint8_t constellation
 The 1st argument is an 8-bit unsigned integer to specifyingthe satellite constellation. The available values are

 defined in “GNSS.h” and shown in below.
 CONSTELLATION_GPS
 CONSTELLATION_BD2
 CONSTELLATION_GLONASS
 uint16_t prn
 The 2nd argument is A 16-bit unsigned integerdenoting PRN of the satellite. User can use numXXXInView() to get

 the valid PRN list before calling this function.
Returns

 A 16-bit unsigned integer to indicate the integer part of elevation angle. The possible range is from 0 to 90.
Remarks

 None

70

GNSSSatellites::azimuth()

 This function returns the azimuth angle for the specified satellite.

Syntax
 #include “GNSS.h”
 uint16_t angle = GnssInfo.satellites.azimuth(constellation, prn);
Parameters
 uint8_t constellation
 The 1st argument is an 8-bit unsigned integer to specifying the satellite constellation. The available values are

 defined in “GNSS.h” and shown in below.
 CONSTELLATION_GPS
 CONSTELLATION_BD2
 CONSTELLATION_GLONASS
 uint16_t prn
 The 2nd argument is A 16-bit unsigned integer denoting PRN of the satellite. User can use numXXXInView() to get

 the valid PRN before calling this function.
Returns

 A 16-bit unsigned integer to indicate the integer part of azimuth angle. The possible range is from 0 to 359.
Remarks

 None

71

GNSSSatellites::CNR()

 This function returns the CNR for the specified satellite.

Syntax
 #include “GNSS.h”
 uint16_tsnr = GnssInfo.satellites.CNR(constellation, prn);
Parameters
 uint8_t constellation
 The 1st argument is an 8-bit unsigned integer to specifying the satellite constellation. The available values are

 defined in “GNSS.h” and shown in below.
 CONSTELLATION_GPS
 CONSTELLATION_BD2
 CONSTELLATION_GLONASS
 uint16_t prn
 The 2nd argument is A 16-bit unsigned integer denoting PRN of the satellite. User can use numXXXInView() to get

 the valid PRN before calling this function.
Returns

 A 16-bit unsigned integer to indicate the integer part of CNR. The normal range of CNR is from 0 to 55.
Remarks

 None

72

3.3.12 GNSSTimeStamp

GNSSTimeStamp

Class related to external event trigger time stamping.

Public Member Functions
 GNSSTimeStamp(void)
 void setTrigCapture(bool enable, uint8_t trigMode, void (*callback))
 uint16_t numRecord(void)
 uint16_t idxRecord(void)
 bool push(TIME_STAMPING_STATUS_T ts)
 bool pop(void)
 void convertTimeStampToUTC(void)
 uint16_t year(void)
 uint8_t month(void)
 uint8_t day(void)
 uint8_t hour(void)
 uint8_t minute(void)
 uint8_t second(void)
 double fractional_sec(void)
 uint16_t formatUTCString(char* str)
 uint16_t formatGPSString(char* str)

Remarks
 None

73

GNSSTimeStamp::setTrigCapture()

 This function sets up Time-Stamp mechanism.

Syntax
 #include “GNSS.h”

 GnssInfo.timestamp.setTrigCapture(enable, trigMode, (void*)callback);
Parameters
 bool enable
 The 1st argument is ON/OFF setting for time-stamp trigger. The available values are defined in “GNSS.h” and

 shown in below.
 TS_TRIG_ON
 TS_TRIG_OFF
 uint8_ttrigMode
 The 2nd argument is an 8-bit unsigned integerspecifying rising-edge or falling-edgeof event trigger on pin GPIO10.

 The available values are defined in “GNSS.h” and shown in below.
 TS_TRIG_RISING
 TS_TRIG_FALLING
 void (*callback)
 The 3rd argument is an address pointer pointing to user-defined function which will be called when the event

 happens on pin GPIO10. There is one argument of type of structure TIME_STAMPING_STATUS_T(defined in
 “sti_gnss_lib.h”) in callback function.

Returns
 None

Remarks
 When user calls this function with 1stargument TRUE, this function will configure pin GPIO10 as input pin and

 disable the normal GPIO interrupt service routine for GPIO10, it also inserts the callback function to kernel space

 as part of interrupt service routine for time-stamp trigger. When user calls this function with 1st argument is

 FALSE, this function just remove the callback function from kernel.

74

GNSSTimeStamp::numRecord()

 This function returns the number of triggered time-stamp records which are stored in internal FIFO of class
 object and waiting to be read.

Syntax
 #include “GNSS.h”
 uint16_t num = GnssInfo.timestamp.numRecord();
Parameters
 None
Returns

 A 16-bit unsigned integer to indicate the number of triggered time-stamp records in FIFO and waiting for
 read. Default depth of FIFO is 10.

Remarks
 None

75

GNSSTimeStamp::idxRecord()

 This function returns the index of current time-stamp record in the FIFO.

Syntax
 #include “GNSS.h”
 uint16_tidx = GnssInfo.timestamp.idxRecord();
Parameters
 None
Returns

 A 16-bit unsigned integer which equals to the index of current time-stamp record in FIFO.
Remarks

 The GNSS receiver will generate an incremental trigger index for each triggered time-stamp record, serving as

 unique ID number associate with the time-stamp, up to 65535. This function gets the index number for the 1st

 unread record in FIFO.

76

GNSSTimeStamp::pop()

 This function is used to get a new unread record from FIFO.

Syntax
 #include “GNSS.h”
 bool result = GnssInfo.timestamp.pop();
Parameters
 None.
Returns

 A boolean TRUE if the FIFO has at least one unread record, otherwise returns a boolean FALSE.
Remarks

 After successfully calling pop(), the 1st unread time-stamp record in FIFO will be duplicated to an internal

 member with the same type of structure TIME_STAMPING_STATUS_T. Functions described later will get time-

 stamp information based on this internal member.

77

GNSSTimeStamp::convertTimeStampToUTC()

 This function is converts time-stamp record to UTC format.

Syntax
 #include “GNSS.h”
 GnssInfo.timestamp.convertTimeStampToUTC();
Parameters
 None.
Returns

 None
Remarks

 After calling convertTimeStampToUTC(), the information of time-stamp record kept in an internal member of

 type of structure TIME_STAMPING_STATUS_T will be converted to another internal member of type of structure

 UTC_TIME_T.

78

GNSSTimeStamp::year()

 This function returns the year value of time-stamp record popped from FIFO.

Syntax
 #include “GNSS.h”
 uint16_t ts_year = GnssInfo.timestamp.year();
Parameters
 None.
Returns

 A 16-bit unsigned integer to indicate the year of the time-stamp record popped from FIFO.
Remarks

 The function convertTimeStampToUTC() must be called prior to calling year() or user may get an incorrect year

 value.

79

GNSSTimeStamp::month()

 This function returns the month value of time-stamp record popped from FIFO.

Syntax
 #include “GNSS.h”
 uint8_t ts_month = GnssInfo.timestamp.month();
Parameters
 None.
Returns

 An 8-bit unsigned integer to indicate the month of the time-stamp record popped from FIFO.
Remarks

 The function convertTimeStampToUTC() must be called prior to calling month() or user may get an incorrect

 month value.

80

GNSSTimeStamp::day()

 This function returns the day value of time-stamp record popped from FIFO.

Syntax
 #include “GNSS.h”
 uint8_t ts_day = GnssInfo.timestamp.day();
Parameters
 None
Returns

 An 8-bit unsigned integer to indicate the day of the time-stamp record popped from FIFO.
Remarks

 The function convertTimeStampToUTC() must be called prior to calling day() or user may get an incorrect day

 value.

81

GNSSTimeStamp::hour()

 This function returns the day value of time-stamp record popped from FIFO.

Syntax
 #include “GNSS.h”
 uint8_t ts_hour = GnssInfo.timestamp.hour();
Parameters
 None
Returns

 An 8-bit unsigned integer to indicate the hour of the time-stamp record popped from FIFO.
Remarks

 The function convertTimeStampToUTC() must be called prior to calling hour() or user may get an incorrect hour

 value.

82

GNSSTimeStamp::minute()

 This function returns the minute value of time-stamp record popped from FIFO.

Syntax
 #include “GNSS.h”
 uint8_t ts_minute = GnssInfo.timestamp.minute();
Parameters
 None
Returns

 An 8-bit unsigned integer to indicate the minute of the time-stamp record popped from FIFO.
Remarks

 The function convertTimeStampToUTC() must be called prior to calling minute() or user may get an incorrect

 minute value.

83

GNSSTimeStamp::second()

 This function returns the integer part of seconds of time-stamp record popped from FIFO.

Syntax
 #include “GNSS.h”
 uint8_t ts_second = GnssInfo.timestamp.second();
Parameters
 None
Returns

 An 8-bit unsigned integer to indicate the integer part of seconds of the time-stamp record popped from FIFO.
Remarks

 The function convertTimeStampToUTC() must be called prior to calling second() or user may get an incorrect

 seconds.

84

GNSSTimeStamp::fractional_sec()

 This function returns the fractional part of seconds of time-stamp record popped from FIFO.

Syntax
 #include “GNSS.h”
 double ts_frac_sec = GnssInfo.timestamp.fractional_sec();
Parameters
 None
Returns

 A double precision floating point value to indicate the fractional part of seconds of the time-stamp record
 popped from FIFO.

Remarks
 The function convertTimeStampToUTC() must be called prior to calling fractional_sec() or user may get an

 incorrect value.

85

GNSSTimeStamp::formatUTCString()

 This function converts the date/time of time-stamp record to a string in a pre-defined UTC format.

Syntax
 #include “GNSS.h”
 uint16_t sizeStr = GnssInfo.timestamp.formatUTCString(str);
Parameters
 char* str
 An address pointer points to a string buffer which will contain the string represents the date/time of time-stamp

 record in pre-defined UTC format.
Returns

 A 16-bit unsigned integer to indicate the size of string.
Remarks

 Precision of time-stamp is better than 100 nanoseconds. Here we defined an UTC format string with fractional

 part of seconds to sixth digit after the decimal point. Below is an example for the string: 2014-05-01 @

 10:42:33(+0.123456) PM. User can change the format implemented in “GNSS.cpp” by their need.

86

GNSSTimeStamp::formatGPSString()

 This function generates a string to represent the GPS date/time.
Syntax
 #include “GNSS.h”
 uint16_t sizeStr = GnssInfo.timestamp.formatGPSString(str);
Parameters
 Char* str
 An address pointer points to a string buffer which will contain the string represents the date/time of time-stamp

 record in GPS format.
Returns

 A 16-bit unsigned integer to indicate the size of string.
Remarks

 Precision of time-stamp provided by NavSpark is better than 100 nanoseconds. Here we defined an UTC format

 string with fractional part of seconds to ninth digit after the decimal point. Below is an example for the string:

 123.4567 ms, week #36 since 1980. User can change the format implemented in “GNSS.cpp” by their need.

87

3.3.13 Timer

TIMER

Class related to built-in H/W timers
Public Member Functions

 TIMER(void)
 TIMER(uint8_t tmrId)
 bool isIdle(void)
 void isr(void)
 uint8_t every(uint32_t period, void (*callback)(void))
 uint8_t every(uint32_t period, void (*callback)(void), uint16_t repeatCount)
 uint8_t after(uint32_t period, void (*callback)(void))
 bool expire(void)
 void stop(void)
 uint16_t remainTimes(void)

Remarks
 None

88

TIMER::TIMER()

 The constructor of class TIMER.

Syntax
 #include “Timer.h”
 TIMER Timer0(0);

 TIMER Timer1(1);
 TIMER Timer2(2);

Parameters
 uint8_t tmrId
 An 8-bit unsigned integer to specify the ID for timer, the legal values are 0, 1 and 2.
Returns

 None
Remarks

 Three pre-instantiated timer objects, Timer0/Timer1/Timer2 have been defined in “Timer.cpp” for built-in H/W

 timers. It is unnecessary for users to call the constructor manually.

89

TIMER::isIdle()

 This function is used to check if timer is idle, not counting.

Syntax
 #include “Timer.h”
 booltmr0 = Timer0.isIdle();

 bool tmr1 = Timer1.isIdle();
 bool tmr2 = Timer2.isIdle();

Parameters
 None
Returns

 Boolean true if counting is completed, or boolean false in case of timer is counting.
Remarks

 None

90

TIMER::every()

 This function is used to start a repeatedly counting timer for repeated jobs.

Syntax
 #include “Timer.h”
 uint8_t tmr0 = Timer0.every(period, callback);
 uint8_t tmr1 = Timer1.every(period, callback);
 uint8_t tmr2 = Timer2.every(period, callback);
Parameters
 uint32_t period
 The 1st argument is the period in milliseconds that the timer will count down to zero and expire.
 void (*callback)(void)
 The 2nd argument is the callback function provided by user that NavSpark will execute when the timer expires.
Returns

 An 8-bit unsigned integer.‘1’ means the configuration of timer was accepted, ‘0’ means timer is invalid.
Remarks

 After calling this function the timer will start down-counting and expire after specified period, then jump to the

 callback function. After leaving callback function, the timer restarts counting and repeats such cycles unless

 calling stop() to terminate this operation. See example “demo_timer” for more detail.

91

TIMER::every()

This function is used to start a timer for set number of cycles.

Syntax
 #include “Timer.h”
 uint8_t tmr0 = Timer0.every(period, callback, repeatCount);

 uint8_t tmr1 = Timer1.every(period, callback, repeatCount);
 uint8_t tmr2 = Timer2.every(period, callback, repeatCount);

Parameters
 uint32_t period
 The 1st argument is the period in milliseconds that the timer will count down to zero and expire.
 void (*callback)(void)
 The 2nd argument is the callback function provided by user that NavSpark will execute when the timer expires.
 uint16_t repeatCount
 The 3rd argument is number of cycles that the timer should repeat.
Returns

 An 8-bit unsigned integer.‘1’ means the configuration of timer was accepted, ‘0’ means timer is invalid.
Remarks

 After calling this function the timer will start counting and expire after specified period, then jump to the

 callback function. After leaving callback function, the timer restarts counting and repeats such the cycle till the

 repeated cycles reach repeat count. See example “demo_timer” for more detail.

92

TIMER::after()

 This function is used to start a timer for only one cycle count.

Syntax
 #include “Timer.h”
 uint8_t tmr0 = Timer0.after(period, callback);

 uint8_t tmr1 = Timer1.after(period, callback);
 uint8_t tmr2 = Timer2.after(period, callback);

Parameters
 uint32_t period
 The 1st argument is the period in milliseconds that the timer will count down to zero and expire.
 void (*callback)(void)
 The 2nd argument is the callback function provided by user that NavSpark will execute when the timer expires.
Returns

 An 8-bit unsigned integer.‘1’ means the configuration of timer was accepted, ‘0’ means timer is invalid.
Remarks

 This function is actually a polymorphism of every() with repeat Count is 1. See example “demo_timer” for more

 detail.

93

TIMER::expire()

 This function is used to check if a timer already expired and is waiting for processing.

Syntax
 #include “Timer.h”
 bool tmr0 = Timer0.expire();
 bool tmr1 = Timer1.expire();

 bool tmr2 = Timer2.expire();
Parameters
 None
Returns

 Boolean true in case of timer expired, or boolean false for timer is idle or counting now.
Remarks

 A dispatcher function, isrTimerFunc(), for timer interrupt service is defined in “Timer.cpp”. The Timer::expire() is

 used to identify which timer triggered interrupt, then user-defined callback function will be executed.

94

TIMER::stop()

 This function is used to stop a timer from counting.

Syntax
 #include “Timer.h”
 Timer0.stop();
 Timer1.stop();
 Timer2.stop();
Parameters
 None
Returns

 None
Remarks

 None

95

TIMER::remainTimes()

 This function is used to query how many repeat cycles the timer need to run.

Syntax
 #include “Timer.h”
 uint16_t cycles = Timer0.remainTimes();
Parameters
 None
Returns

 A 16-bit unsigned integer to indicate the count of remaining cycles.
Remarks

 For example, assuming one user enables timer 0 such that timer0 will expire every 300ms and repeat for 100

 times, namely Timer0.every(300, callback, 100). After 1,500 ms, the user uses Timer0.remainTimes() to query

 how many cycles left now. The returned value is 95.

96

3.3.14 SPI_MasterSlave

SPI_MasterSlave

Class related to SPI master or slave interface.

Public Member Functions
 SPI_MasterSlave
 void config(uint8_t spiMode, uint32_t clkRate, bool en_cs1, bool en_cs2)
 void begin(void)
 void resetTx(void)
 void resetRx(void)
 size_t write(uint8_t data)
 size_t write(uint8_t *data, size_t size)
 void slaveSelect(uint8_t slv)
 size_t transfer(void)
 size_t transfer(size_t size)
 size_t available(void)
 int remaining(void)
 int read(void)
 uint8_t pick(size_t offset)
 void enableBufferForHostWrite(void)
 bool validBufferForHostRead(void)
 uint8_t copyDataToBufferForHostRead(void)
 void enableBufferForHostRead(void)
 void attachInterrupt(uint8_t type, void (*userFunc)(void))
 void detachInterrupt(uint8_t type)
 void isr (uint8_t type)

Remarks
 None

97

SPI_MasterSlave::SPI_MasterSlave()

 The constructor of class SPI.

Syntax
 #include “SPI.h”
 SPI_MasterSlave obj = SPI_MasterSlave (type);
Parameters
 uint8_t type
 An 8-bit unsigned integer selecting SPI master mode (type = 1) or SPI slave mode (type = 0). Calling this

 constructor without argument implies SPI master mode.
Returns

 A SPI object.
Remarks

 Two pre-instantiated SPI objects, spiMater and spiSlave have been defined in “SPI.cpp” by following code:

 SPI_MasterSlave spiMaster = SPI_MasterSlave (SPI_MASTER);
 SPI_MasterSlave spiSlave = SPI_MasterSlave (SPI_SLAVE);

98

SPI_MasterSlave::config()

 This function is used to configure the SPI mode. And configure clock rate for SPI master only.

Syntax
 #include “SPI.h”
 spiMaster.config(spiMode, clkRate, en_cs1, en_cs2);
Parameters
 uint8_t spiMode
 An 8-bit unsigned integer to specify the SPI mode. Currently only mode 0 and 1 are supported.

 uint32_t clkRate
 A 32-bit unsigned integer to specify the rate of SPI clock in Hz.
 bool en_cs1
 A boolean value to specify if the SPI chip select 1 (GPIO22) is used to connect to remote device.
 bool en_cs2
 A boolean value to specify if the SPI chip select 2 (GPIO6) is used to connect to remote device.
Returns

 None
Remarks

 There are four SPI modes shown in below and NavSpark supports mode 0 and 1.

Mode CPOL CPHA
0 0 0
1 0 1
2 1 0
3 1 1

 SPI clock can operate at very high clock rate, limitation mostly depends on maximum SPI clock rate accepted by

 the slave device.

99

SPI_MasterSlave::begin()

 This function is used to setup the GPIO pins for SPI operation and perform necessary initialization for SPI H/W
 receiver.

Syntax
 #include “SPI.h”
 spiMaster.begin();

 spiSlave.begin();
Parameters
 None
Returns

 None
Remarks

 Currently NavSpark supports three SPI masters with separate chip select pins and one SPI slave, see table in

 below for more detail.

GPIO pin NavSpark as SPI master NavSpark as SPI slave
6 chip select 2 (output)

22 chip select 1 (output)
28 chip select 0 (output) chip select (input)
29 SCK (output) SCK (input)
30 MOSI (output) MOSI (input)
31 MISO (input) MISO (output)

100

SPI_MasterSlave::resetTx()

 This function is used to reset the internal transmit buffer.

Syntax
 #include “SPI.h”
 spiMaster.resetTx();

 spiSlave.resetTx();
Parameters
 None
Returns

 None
Remarks

 A transmit buffer is implemented in “SPI.cpp” to transmit data; this function will reset the pointer back to

 beginning of buffer.

101

SPI_MasterSlave::resetRx()

 This function is used to reset the internal receive buffer.

Syntax
 #include “SPI.h”
 spiMaster.resetRx();

 spiSlave.resetRx();
Parameters
 None
Returns

 None
Remarks

 A receive buffer is implemented in “SPI.cpp”to receive data; this function will reset the pointer back to

 beginning of buffer.

102

SPI_MasterSlave::write()

 This function is used to put one byte of data to the internal transmit buffer.

Syntax
 #include “SPI.h”
 size_t wrSize = spiMaster.write(data);

 size_t wrSize = spiSlave.write(data);
Parameters
 uint8_t data
 The argument is the one byte data to be transmitted.
Returns

 This function will return 1 if the buffer is valid and accept the data, or return 0 for the buffer is invalid.
Remarks

 None

103

SPI_MasterSlave::write()

 This function is used to put multiple bytes of data to the internal transmit buffer.

Syntax
 #include “SPI.h”
 size_t wrSize = spiMaster.write(data, size);

 size_t wrSize = spiSlave.write(data, size);
Parameters
 uint8_t *data
 The 1st argument is an address pointer points to the buffer which contains the data to be transmitted.
 size_t size
 The 2nd argument is the number of bytes from the beginning of data by which NavSpark should copy to internal

 transmit buffer.
Returns

 A number of bytes (type size_t) to indicate how many bytes of data have been put into internal transmit buffer.
Remarks

 None

104

SPI_MasterSlave::slaveSelect()

 This function is used to choose which slave device to communicate with.

Syntax
 #include “SPI.h”
 spiMaster.slaveSelect(slv);
Parameters
 uint8_tslv
 An 8-bit unsigned integer to specify which slave device should be active during later SPI communication. Valid

 values are 0, 1, 2 for currently supported3 chip select pins.
Returns

 None
Remarks

 This function is effective for SPI master and the default chip select is for slave 0.

105

SPI_MasterSlave::transfer()

 This function is for master to transmit data to slave, and receive data from slave simultaneously.

Syntax
 #include “SPI.h”
 size_t num = spiMaster.transfer();
 size_t num = spiMaster.transfer(size);
Parameters
 The 1st argument is a type size_t value to specify the number of bytes to be sent from the position of buffer

 specified by transmit pointer, the transmit pointer can be reset to the beginning of buffer by SPI::resetTx() and
 incremented by the bytes transmitted over SPI bus. If no argument is given, the size of transmit data remaining
 in the buffer will be used internally.

Returns
 A type size_t value to indicate how many bytes of data are transmitted/received during this transaction.

Remarks

 Due to H/W limitation, a single transaction can only transfer maximum 8 bytes of data. For transfer of large data,

 user may need to call SPI::transfer() several times. A simple example is shown in below.

 spiMaster.resetTx();

 spiMaster.resetRx();

 for (i = 0; i < 16; i++) { /* write 16 bytes of data to transmit buffer */

 spiMaster.write(i);

 }

 io_cnt = spiMaster.transfer(16); /* inform SPI total 16 bytes to be transmitted */

 while(io_cnt != 16) {

 io_cnt += spiMaster.transfer();

 }

 Currently, maximum data transfer size at one transfer is 16 bytes.

106

SPI_MasterSlave::available()

 This function is used to check if any incoming data stored in buffer.

Syntax
 #include “SPI.h”
 int num = spiMaster.avaiable();
 int num = spiSlave.avaiable();
Parameters
 None
Returns

 A value of type size_t to indicate how many bytes of unread data are received in buffer.
Remarks

 None

107

SPI_MasterSlave::remaining()

 This function is used to check if any outgoing data not transmitted yet.

Syntax
 #include “SPI.h”
 int num = spiMaster.remaining();
 int num = spiSlave.remaining();
Parameters
 None
Returns

 An integer value to indicate how many bytes of outgoing data are in transmit buffer but not transmitted yet.
Remarks

 None

108

SPI_MasterSlave::read()

 This function is used to pop received data from internal buffer.

Syntax
 #include “SPI.h”
 int rxd = spiMaster.read();
 int rxd = spiSlave.read();
Parameters
 None
Returns

 An integer with its value equals to the 1st bytes of unread data in received buffer.
Remarks

It is recommended that user uses SPI_MasterSlave::available() to check if there is any unread received data in

buffer followed by SPI_MasterSlave::read(). See a simple example shown in below.

 while (spiMaster.available()) {

 rxd = spiMaster.read();

 // parsing rxd by your need here

 }

109

SPI_MasterSlave::pick()

 This function is used to pop received data from internal buffer.

Syntax
 #include “SPI.h”
 int rxd = spiMaster.pick(offset);
 int rxd = spiSlave.pick(offset);
Parameters
 size_t offset
 The 1st argument is a value to specify the position of internal received buffer from which one byte of data will be

 extracted.
Returns

 An integer with its value equals to the data on the specified position of buffer.
Remarks

 None

110

SPI_MasterSlave::enableBufferForHostWrite()

 This function is used for SPI slave interface. See section 4-1 for more detail.

Syntax
 #include “SPI.h”
 spiSlave.enableBufferForHostWrite();
Parameters
 None
Returns

 None
Remarks

 Calling this function will set bit-1 of MAIN_REG, remote SPI host can read this register through SPI protocol to

 know that the WBUF is available to be written by SPI host.

111

SPI_MasterSlave::validBuffForHostRead()

 This function is used for SPI slave interface. See section 4-1 for more detail.

Syntax
 #include “SPI.h”
 bool result = spiSlave.validBufferForHostRead();
Parameters
 None
Returns

 Boolean true if buffer empty all data read by SPI host, or boolean false if there is still some data not read by SPI
 host.

Remarks

 Calling this function to make sure the buffer is empty ready for refill, then uses SPI_MasterSlave::write() to put

 data to the internal FIFO for SPI host, followed by calling SPI_MasterSlave::copyDataToBufferForHostRead() and

 SPI_MasterSlave::enableBufferForHostRead()to inform SPI host that new data is waiting to be read.

112

SPI_MasterSlave::copyDataToBufferForHostRead()

 This function is used for SPI slave interface. See section 4-1 for more detail.

Syntax
 #include “SPI.h”
 uint8_t num = spiSlave.copyDataToBufferForHostRead();
Parameters
 None
Returns

 An 8-bit unsigned integer to indicate how many bytes of data have been moved from internal transmit FIFO to
 RBUF_REG.

Remarks

 Calling this function will move the specified number of data from internal transmit FIFO to the RBUF_REG and

 set the number to RBUF_STS_REG. It also update the transmit pointer and size of transmit FIFO.

113

SPI_MasterSlave::enableBufferForHostRead()

This function is used for SPI slave interface. See section 4-1 for more detail.

Syntax
 #include “SPI.h”
 spiSlave.enableBufferForHostRead();
Parameters
 None
Returns

None
Remarks

Calling this function will set the bit-2 of MAIN_REG. The SPI host can read MAIN_REG and check this bit to identify

if it can issue a new read transaction.

114

SPI_MasterSlave::attachInterrupt()

 This function is used for SPI slave interface. See section 4-1 for more detail.

Syntax
 #include “SPI.h”
 spiSlave.attachInterrupt(type, userFunc);
Parameters
 uint8_t type
 The 1st argument is an 8-bit unsigned integer to specify which ISR function is attached, the legal values are list in

 below.
 IRQ_SPI_SLAVE_HOST_READ_DONE
 IRQ_SPI_SLAVE_HOST_WRITE_DONE

 void (*userFunc)(void)
 The 2nd argument is the entry of user-provided ISR to be hooked.

Returns
 None

Remarks

 User can apply this function to hook their ISR to do extra task after SPI host read/write data from/to hardware

 FIFO. A simple example is given in below.

 voidusrTask1(void)

 {

 // add your code here for SPI host read done

 }

 voidusrTask2(void)

 {

 // add your code here for SPI host write done

 }

 setup()

 {

 spiSlave.attachInterrupt(IRQ_SPI_SLAVE_HOST_READ_DONE, usrTask1);

 spiSlave.attachInterrupt(IRQ_SPI_SLAVE_HOST_WRITE_DONE, usrTask2);

 }

115

SPI_MasterSlave::detachInterrupt()

 This function is used for SPI slave interface. See section 4-1 for more detail.

Syntax
 #include “SPI.h”
 spiSlave.detachInterrupt(type);
Parameters
 uint8_t type
 The 1st argument is an 8-bit unsigned integer to specify which ISR function to be de-attached, the legal values

 are list in below.
 IRQ_SPI_SLAVE_HOST_READ_DONE
 IRQ_SPI_SLAVE_HOST_WRITE_DONE
Returns

 None
Remarks

 None

116

SPI_MasterSlave::isr()

 This function is used for SPI slave interface. See section 4-1 for more detail.

Syntax
 #include “SPI.h”
 spiSlave.isr(type);
Parameters
 uint8_t type
 The 1st argument is an 8-bit unsigned integer to specify which interrupt case is triggered now. The possible

 values are listed in below.
 IRQ_SPI_SLAVE_RESET
 IRQ_SPI_SLAVE_HOST_READ_DONE
 IRQ_SPI_SLAVE_HOST_WRITE_DONE
Returns

 None
Remarks

 When any interrupt associated with SPI slave is trigged, ISR dispatcher “hwISRFunc()” defined in

 “wiring_intr.c”will be entered, and the dispatcher will call “isrSPISlaveFunc()” which is defined in “SPI.cpp” with

 proper argument.

117

3.3.15 SPIClass

SPIClass

Class related to SPI master interface. This class was created to have members that compatible with Arduino SPI
library.

Public Member Functions
 SPIClass
 void begin(void)
 void end(void)
 uint8_t transfer(uint8_t data)
 uint16_t transfer16(uint16_t data)
 void beginTransaction(SPISettings settings)
 void endTransaction(void)

Remarks
 None

SPISettings

Class to configure SPI master port for SPI device used in SPI.beginTransaction in SPIClass. Descriptions of SPIsettings are

in SPI.beginTransaction.

118

SPIClass::SPIClass()

 The constructor of class SPIClass.

Syntax
 #include “SPI.h”
 SPIClass obj = SPIClass(type);
Parameters
 uint8_t type
 An 8-bit unsigned integer selecting SPI master mode (type = 1) or SPI slave mode (type = 0). Calling this

 constructor without argument implies SPI master mode. Currently, only type 1 is supported in this class.
Returns

 A SPI object.
Remarks

 One pre-instantiated SPI objects, SPI has been defined in “SPI.cpp” by following code:

 SPIClass SPI = SPIClass(SPI_MASTER);

119

SPIClass::begin()

 This function is used to setup the GPIO pins for SPI operation and perform necessary initialization for SPI H/W
 receiver.

Syntax
 #include “SPI.h”
 SPI.begin();
Parameters
 None
Returns

 None
Remarks

 Currently NavSpark supports one SPI master with chip select pins other than GPIO 28,29,30,31.

GPIO pin NavSpark as SPI master Notes
General

I/O
chip select (output) GPIO other than 28, 29,30,31.

Use digitalWrite(GPIO, LOW)
and digitalWrite(GPIO, HIGH) as
select and de-select chip select

29 SCK (output)
30 MOSI (output)
31 MISO (input)

120

SPIClass::end()

 This function is used to disable the SPI bus.

Syntax
 #include “SPI.h”
 SPI.end();
Parameters
 None
Returns

 None
Remarks

 None

121

 SPIClass::transfer()

 This function is for master to transmit data to slave, and receive data from slave simultaneously.

Syntax
 #include “SPI.h”
 uint8_t rxdata = SPI.transfer(data);
Parameters

uint8_t data
 The argument is a type of uint8_t data value to be sent over the SPI bus.
Returns

 The received data of type uint8_t from the SPI bus.
Remarks

 None

122

 SPIClass::transfer16()

 This function is for master to transmit data to slave, and receive data from slave simultaneously.

Syntax
 #include “SPI.h”
 uint16_t rxdata = SPI.transfer16(data);
Parameters

Uint16_t data
 The argument is a type of uint_16 data value to be sent over the SPI bus.
Returns

 The received data of type uint16_t from the SPI bus.
Remarks

 None

123

 SPIClass::beginTransaction()

 This function is for master to initialize the SPI bus using object of SPISettings class.

Syntax
 #include “SPI.h”
 SPI.beginTransaction(Settings);
Parameters
 SPISettings Settings

The argument is a type of SPISettings to initialize the SPI bus.
Returns

 None
Remarks

SPISettings has 3 parameters, syntax: SPISettings Settting(SPI clock, dataOrder, dataMode), SPI clock, data order

and data mode. SPI clock is the clock rate over the SPI bus, ex. 1Mhz, use 1000000. Data order can be MSBFIRST. Data

mode can be SPI_MODE0 and SPI_MODE1.

There are four SPI modes shown in below and NavSpark supports mode 0 and 1.

Mode CPOL CPHA
0 0 0
1 0 1
2 1 0
3 1 1

SPI clock can operate at very high clock rate, limitation mostly depends on maximum SPI clock rate accepted by

the slave device.

124

 SPIClass::endTransaction()

 This function is for master to stop using SPI bus.

Syntax
 #include “SPI.h”
 SPI.endTransaction();
Parameters
 None
Returns

 None
Remarks

None

125

3.3.16 TwoWire_MasterSlave

TwoWire_MasterSlave

Class related to the interface for two-wire master or slave.

Public Member Functions
 TwoWire_MasterSlave
 void config(uint32_t clkRate)
 void reset(void)
 void begin(uint8_t addr)
 void setTransmitDeviceAddr(uint8_t addr)
 void setReceiveDeviceAddr(uint8_t addr)
 uint16_t endTransmission(bool xmitStop)
 uint16_t readDevice(uint16_t quantity, bool xmitStop)
 uint16_t readDeviceFromOffset(uint8_t devOffset, uint16_t quantity, bool xmitStop)
 size_t write(uint8_t data)
 size_t write(uint8_t *data, size_t size)
 size_t writeAtOffset(uint8_t devOffset, uint8_t *data, size_t size)
 int available(void)
 int read(void)
 int peek(void)
 void onReceive(void (*function)(void))
 void onRequest(void (*function)(void))
 void isr(void)
 uint8_t requestFrom(uint8_t address, uint8_t quantity)
 uint8_t requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop)
 uint8_t beginTransmission (uint8_t address)

Remarks
 None

126

TwoWire_MasterSlave::TwoWire_MasterSlave()

 The constructor of class TwoWire_MasterSlave.

Syntax
 #include “TwoWire.h”
 TwoWire_MasterSlave obj = TwoWire_MasterSlave (type);
Parameters
 uint8_t type
 An 8-bit unsigned integer to specify the object is a 2-wire master (type = 1) or 2-wire slave (type = 0). Calling this

 constructor without argument implies a 2-wire master.
Returns

 A 2-wire object.
Remarks

 Two pre-instantiated 2-wire objects, twMater and twSlave have been defined in “TwoWire.cpp” by following

 code:

 TwoWire_MasterSlave twMaster = TwoWire_MasterSlave (TWOWIRE_MASTER);
 TwoWire_MasterSlave twSlave = TwoWire_MasterSlave (TWOWIRE_SLAVE);

127

TwoWire_MasterSlave::config()

 This function is used to configure clock rate on 2-wire bus.

Syntax
 #include “TwoWire.h”
 twMaster.config(clkRate);
Parameters
 uint32_tclkRate
 A 32-bit unsigned integer to specify the rate of clock of 2-wire.
Returns
 None
Remarks

 Up to 10MHz clock rate can be supported by the 2-wire interface, but usable clock rate depends on loading of
 the connected device and device’s 2-wirecharacteristics.

128

TwoWire_MasterSlave::begin()

This function is used to perform the physical H/W initialization of 2-wire controller.

Syntax
 #include “TwoWire.h”
 twMaster.begin();
 twSlave.begin(addr);
Parameters
 uint8_t addr
 The 1st argument is a 32-bit unsigned integer to specify the device address for operation in slave mode. This

argument can be omitted for 2-wire master.
Returns
 None
Remarks

Device address can be set to any 7-bit value when configured as a two-wire slave device. A new device address
could be given by calling this function before data transmission. The default device address of two-wire slave mode
is 0x3C.

129

TwoWire_MasterSlave::setTransmitDeviceAddr()

 This function is used to set the device address for sending data over 2-wire master mode.

Syntax
 #include “TwoWire.h”
 twMaster.setTransmitDeviceAddr(addr);
Parameters
 uint8_t addr
 The 1st argument is an 8-bit unsigned integer to specify the 7-bit device address of remote device. This value is

 usedby 2-wire master to select which device to perform write operation and the valid value is from 0 to 127.
Returns
 None
Remarks

 None

130

TwoWire_MasterSlave::setReceiveDeviceAddr()

 This function is used to set the device address for receiving of data over 2-wire master mode.

Syntax
 #include “TwoWire.h”
 twMaster.setReceiveDeviceAddr(addr);
Parameters
 uint8_t addr
 The 1st argument is an 8-bit unsigned integer to specify the 7-bit device address of remote device. This value is

 used by 2-wire mastet to select which device to perform read operation and the valid value is from 0 to 127.
Returns
 None
Remarks

 None

131

TwoWire_MasterSlave::endTransmission()

 This function is used for 2-wire master to transmit data over 2-wire bus.

Syntax
 #include “TwoWire.h”
 twMaster.endTransmission(xmitStop);
Parameters
 boolxmitStop
 The 1st argument is a boolean value to specify if a STOP bit should be added after the last bit of data. If this

 argument is omitted, it implies a TRUE value is given and STOP bit will be added.
Returns

 A 16-bit unsigned integer to indicate how many bytes of data were accepted by the remote device.
Remarks

 This function will read all data in internal transmit FIFO which was filled by TwoWire_MasterSlave::write() and
 send them over the 2-wire bus, the return value indicate the exact number of bytes of data were accepted by
 remote device.

132

TwoWire_MasterSlave::readDevice()

 This function is for 2-wire master to read data from remote device.

Syntax
 #include “TwoWire.h”
 uint16 num = twMaster.readDevice(quantity, xmitStop);
Parameters
 uint16_t quantity

 The 1st argument is a unsigned 16-bit value to specify the number of bytes to be read from device.
 boolxmitStop
 The 2ndargument is a boolean value to specify if a STOP bit should be added after the last bit of data. If this

 argument is omitted, it implies a TRUE value is given and a STOP bit will be added.
Returns

 A 16-bit unsigned integer to indicate how many bytes of data read from the remote device.
Remarks

 This function will perform direct read operation from remote device and save those data into internal receive
 FIFO. If the available space of FIFO is less than quantity, this function will only read data with size of available
 space of FIFO.

133

TwoWire_MasterSlave::readDeviceFromOffset()

 This function is for 2-wire master to read data with specified offset from remote device.

Syntax
 #include “TwoWire.h”
 uint16 num = twMaster.readDeviceFromOffset(devOffset, quantity, xmitStop);
Parameters
 uint8_t devOffset

 The 1st argument is an 8-bit unsigned integer to specify the offset from which the data should be read from
 remote device.
 uint16_t quantity
 The 2ndargument is A 16-bit unsigned integer to specify the number of bytes to be read from device.

 boolxmitStop
 The 3rdargument is a boolean value to specify if a STOP bit should be added after the last bit of data.
Returns

 A 16-bit unsigned integer to indicate how many bytes of data read from the remote device.
Remarks

 This function is composed of two operations: the 1st operation is a write operation to notify remote device
 where to start the reading, the 2nd operation is the read operation just like
 “TwoWire_MasterSlave::readDevice()”.

134

TwoWire_MasterSlave::write()

This function puts1-byte data to internal transmit FIFO (for both slave and master).

Syntax
 #include “TwoWire.h”
 size_t num = twMaster.write(data);
 size_t num = twSlave.write(data);
Parameters
 uint8_tdata

The 1st argument is an 8-bit unsigned integer data to be transmitted.
Returns

In case of master mode, ‘1’ means the data was transmitted on bus successfully or ‘0’ means transmission failed. In
case of slave mode, ‘1’ means the data was put to transmit FIFO successfully and ‘0’ means the FIFO rejected.

Remarks
None

135

TwoWire_MasterSlave::write()

This function is used to put data from source buffer to internal transmit FIFO(for both master and slave)

Syntax
 #include “TwoWire.h”
 size_t num = twMaster.write(data, size);
 size_t num = twSlave.write(data, size);
Parameters
 uint8_t *data

The 1st argument is a pointer points to an array of unsigned 8-bit data.
size_t size
The 2nd argument is a value to specify the number of data in bytes should be pushed to transmit FIFO.

Returns
In case of master mode, a value of type size_t to indicate the number of data transmitted successfully. In case of
slave mode, this value only reflects the number of data to be put to transmit FIFO.

Remarks
None

136

TwoWire_MasterSlave::writeAtOffset()

 This function is used to write data to remote slave at specified starting offset.

Syntax
 #include “TwoWire.h”
 size_t num = twMaster.writeAtOffset(devOffset, data, size);
Parameters
 uint8_t devOffset

 The 1st argument is an 8-bit unsigned integer to specify the offset of slave from which the data should be written.
 uint8_t *data

 The 1st argument is a pointer points to an array of unsigned 8-bit data.
 size_t size
 The 2nd argument is a value to specify the number of data in bytes to be written to remote slave.

Returns
 A value of type size_t to indicate how many bytes of data have been written to remote slave.

Remarks
 See “section 4-2” for more detail.

137

TwoWire_MasterSlave::available()

 This function is used to query number of data received.

Syntax
 #include “TwoWire.h”
 int num = twMaster.available();
 int num = twSlave.available();
Parameters
 None
Returns

 An integer value to indicate number of data in bytes received in receive FIFO.
Remarks
 None

138

TwoWire_MasterSlave::read()

 This function is used to get the data from received FIFO.

Syntax
 #include “TwoWire.h”
 intdata = twMaster.read();
 intdata = twSlave.read();
Parameters
 None
Returns

 An integer value equals to the 1st unread byte of data in receive FIFO. If there is no unread data in FIFO, integer
 ‘-1’ will be returned.

Remarks
 None

139

TwoWire_MasterSlave::peek()

 This function is used to peek the data from received FIFO.

Syntax
 #include “TwoWire.h”
 int data = twMaster.peek();
 int data = twSlave.peek();
Parameters
 None
Returns

 An integer value equals to the 2nd unread byte of data in receive FIFO. If there is no data or only 1-byte of data
 left in receive FIFO, integer ‘-1’ will be returned.

Remarks
 Unlike “TwoWire_MasterSlave::read()”, this function does NOT change the value of internal read pointer, that is,
 user can get same data after calling “read()” twice.

140

TwoWire_MasterSlave::onReceive()

 This function is used to hook the user-defined function which will be executed when data written by remote
 host is received.

Syntax
 #include “TwoWire.h”
 twSlave.onReceive(function);
Parameters
 void (*function)(void)
 The 1st argument is a pointer pointing to the entry of user-defined function.
Returns

 None
Remarks

 User may hook their function for post-processing after moving received data from RX_FIFO (see “section 4-2” for
 more detail) to internal buffer.

141

TwoWire_MasterSlave::onRequest()

This function is used to hook the user-defined function which will be executed when remote host request to
transmit data.

Syntax
 #include “TwoWire.h”
 twSlave.onRequest(function);
Parameters
 void (*function)(void)
 The 1st argument is a pointer points to the entry of user-defined function.
Returns

None
Remarks

User may hook their function for pre-processing before moving data from internal buffer to TX_FIFO (see “section
4-2” for more detail).

142

TwoWire_MasterSlave::isr()

 This function is used for 2-wire slave interface. See“section 4-2”for more detail.

Syntax
 #include “TwoWire.h”
 twSlave.isr();
Parameters
 None
Returns

 None
Remarks

 When any interrupt associated with 2-wire slave is triggered, ISR dispatcher “hwISRFunc()” defined in
 “wiring_intr.c”will be entered, and the dispatcher will call “isrTwoWireSlaveFunc()”, which is defined in
 “TwoWire.cpp”.

143

 TwoWire_MasterSlave::requestFrom()

 This function is for 2-wire master to read data from remote device.

Syntax
 #include “TwoWire.h”
 twMaster.requestFrom(address, quanity);
Parameters
 uint8_t address
 The 1st argument is an 8-bit unsigned integer to specify the 7-bit device address of remote device. This value is

 used by 2-wire master to select which device to perform write operation and the valid value is from 0 to 127.
 uint8_t quanity

 The 2ndargument is to specify the number of bytes to be read from device.
Returns

 A 8-bit unsigned integer to indicate how many bytes of data read from the remote device.
Remarks

 This function will perform direct read operation from remote device and save those data into internal receive
 FIFO. If the available space of FIFO is less than quantity, this function will only read data with size of available
 space of FIFO.

144

 TwoWire_MasterSlave::requestFrom()

 This function is for 2-wire master to read data from remote device.

Syntax
 #include “TwoWire.h”
 twMaster.requestFrom(address, quanity, sendStop);
Parameters
 uint8_t address
 The 1st argument is an 8-bit unsigned integer to specify the 7-bit device address of remote device. This value is

 used by 2-wire master to select which device to perform write operation and the valid value is from 0 to 127.
 uint8_t quanity

 The 2ndargument is to specify the number of bytes to be read from device.
 uint8_t sendStop

 The 3rdargument is a boolean value to specify if a STOP bit should be added after the last bit of data. If this
 argument is omitted, it implies a TRUE value is given and a STOP bit will be added.

Returns
 A 8-bit unsigned integer to indicate how many bytes of data read from the remote device.

Remarks
 This function will perform direct read operation from remote device and save those data into internal receive
 FIFO. If the available space of FIFO is less than quantity, this function will only read data with size of available
 space of FIFO.

145

 TwoWire_MasterSlave::requestFrom()

 This function is for 2-wire master to read data from remote device.

Syntax
 #include “TwoWire.h”
 twMaster.requestFrom(address, quanity, sendStop);
Parameters
 uint8_t address
 The 1st argument is an 8-bit unsigned integer to specify the 7-bit device address of remote device. This value is

 used by 2-wire master to select which device to perform write operation and the valid value is from 0 to 127.
 uint8_t quanity

 The 2ndargument is to specify the number of bytes to be read from device.
 uint8_t sendStop

 The 3rdargument is a boolean value to specify if a STOP bit should be added after the last bit of data. If this
 argument is omitted, it implies a TRUE value is given and a STOP bit will be added.

Returns
 A 8-bit unsigned integer to indicate how many bytes of data read from the remote device.

Remarks
 This function will perform direct read operation from remote device and save those data into internal receive
 FIFO. If the available space of FIFO is less than quantity, this function will only read data with size of available
 space of FIFO.

146

 TwoWire_MasterSlave::beginTransmission()

 This function is used to reset FIFO and set the I2C slave device with the given address as a 2-wire master.

Syntax
 #include “TwoWire.h”
 twMaster.beginTransmission(addr);
Parameters
 uint8_t addr
 The 1st argument is an 8-bit unsigned integer to specify the 7-bit device address of remote device. This value is

 used by 2-wire master to select which device to perform write operation and the valid value is from 0 to 127.
Returns

 None
Remarks

 None

147

3.3.17 TwoWire
TwoWire

Class related to the interface for two-wire master or slave. This class was created to have members that compatible
with Arduino wire filename and library.

Public Member Functions
 TwoWire
 void config(uint32_t clkRate)
 void begin(uint8_t addr)
 uint8_t requestFrom(uint8_t address, uint8_t quantity)
 uint8_t requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop)
 uint8_t beginTransmission (uint8_t address)
 uint16_t endTransmission()
 uint16_t endTransmission(bool xmitStop)
 size_t write(uint8_t data)
 size_t write(uint8_t *data, size_t size)
 int available(void)
 int read(void)
 void onReceive(void (*function)(void))
 void onRequest(void (*function)(void))

Remarks
 The TwoWire class was created to be compatible with Arduino Wire library, Wire.h is the header and Wire is the

 object. 1.0.0 version of TwoWire has been moved to TwoWire_MasterSlave, shown in previous section. The

 TwoWire has the same members as TwoWire_MasterSlave to be backward compatible. Here in this section, we

 list Arduino compatible member functions and config.

148

TwoWire::TwoWire()

 The constructor of class TwoWire.

Syntax
 #include “Wire.h”
 TwoWire obj = Wire();
Parameters
 uint8_t type
 An 8-bit unsigned integer to specify the object is a 2-wire master.
Returns

 A 2-wire object.
Remarks

 One pre-instantiated 2-wire object, Wire have been defined in “Wire.cpp” by following code:

 TwoWire Wire = TwoWire();

149

TwoWire::config()

This function is used to configure clock rate on 2-wire bus.

Syntax
#include “Wire.h”

Wire.config(clkRate);
Parameters
 uint32_tclkRate
 A 32-bit unsigned integer to specify the rate of clock of 2-wire.
Returns
 None
Remarks

Up to 10MHz clock rate can be supported by the 2-wire interface, but usable clock rate depends on loading of the
connected device and device’s 2-wire characteristics.

150

TwoWire::begin()

This function is used to perform the physical H/W initialization of 2-wire controller.

Syntax
 #include “Wire.h”
 Wire.begin();
 Wire.begin(addr);
Parameters
 uint8_t addr
 The 1st argument is a 32-bit unsigned integer to specify the device address for operation in slave mode. This

 argument can be omitted for 2-wire master.
Returns
 None
Remarks

 Device address can be set to any 7-bit value when configured as a two-wire slave device. A new device address
 could be given by calling this function before data transmission. The default device address of two-wire slave
 mode is 0x3C.

151

TwoWire:: requestFrom()

This function is for 2-wire master to read data from remote device.

Syntax
#include “Wire.h”
Wire.requestFrom(address, quanity);

Parameters
 uint8_t address
 The 1st argument is an 8-bit unsigned integer to specify the 7-bit device address of remote device. This value is used

by 2-wire master to select which device to perform write operation and the valid value is from 0 to 127.
uint8_t quanity

 The 2ndargument is to specify the number of bytes to be read from device.
Returns

A 8-bit unsigned integer to indicate how many bytes of data read from the remote device.
Remarks
 This function will perform direct read operation from remote device and save those data into internal receive FIFO.

 If the available space of FIFO is less than quantity, this function will only read data with size of available space of

 FIFO.

152

TwoWire:: requestFrom()

 This function is for 2-wire master to read data from remote device.

Syntax
 #include “Wire.h”
 Wire.requestFrom(address, quanity, sendStop);
Parameters
 uint8_t address
 The 1st argument is an 8-bit unsigned integer to specify the 7-bit device address of remote device. This value is

 used by 2-wire master to select which device to perform write operation and the valid value is from 0 to 127.
 uint8_t quanity

 The 2ndargument is to specify the number of bytes to be read from device.
 uint8_t sendStop

 The 3rdargument is a boolean value to specify if a STOP bit should be added after the last bit of data. If this
 argument is omitted, it implies a TRUE value is given and a STOP bit will be added.

Returns
 A 8-bit unsigned integer to indicate how many bytes of data read from the remote device.

Remarks
 This function will perform direct read operation from remote device and save those data into internal receive

 FIFO. If the available space of FIFO is less than quantity, this function will only read data with size of available

 space of FIFO.

153

TwoWire::beginTransmission()

 This function is used to reset FIFO and set the I2C slave device with the given address as a 2-wire master.

Syntax
 #include “Wire.h”
 Wire.beginTransmission(addr);
Parameters
 uint8_t addr
 The 1st argument is an 8-bit unsigned integer to specify the 7-bit device address of remote device. This value is

 used by 2-wire master to select which device to perform write operation and the valid value is from 0 to 127.
Returns

 None
Remarks

 None

154

TwoWire::endTransmission()

This function is used for 2-wire master to transmit data over 2-wire bus..

Syntax
 #include “Wire.h”
 Wire.endTransmission(xmitStop);
Parameters
 bool xmitStop
 The 1st argument is a boolean value to specify if a STOP bit should be added after the last bit of data. If this

argument is omitted, it implies a TRUE value is given and STOP bit will be added.
Returns

A 16-bit unsigned integer to indicate how many bytes of data were accepted by the remote device.
Remarks

This function will read all data in internal transmit FIFO which was filled by Wire::write() and send them over the 2-
wire bus, the return value indicate the exact number of bytes of data were accepted by remote device.

155

TwoWire::write()

 This function puts 1-byte data to internal transmit FIFO (for both slave and master). And start write operation on
 2-wire bus (for 2-wire master only).

Syntax
 #include “Wire.h”
 size_t num = Wire.write(data);
Parameters
 uint8_tdata

 The 1st argument is an 8-bit unsigned integer data to be transmitted.
Returns

 In case of master mode, ‘1’ means the data was transmitted on bus successfully or ‘0’ means transmission failed.
 In case of slave mode, ‘1’ means the data was put to transmit FIFO successfully and ‘0’ means the FIFO rejected.

Remarks
 The behavior of this function differs for 2-wire master and 2-wire slave mode. When in 2-wire master mode,
 calling this function will put data into transmit FIFO followed by immediate data transmission on 2-wire bus,
 however, there is no data transmission on bus when in 2-wire slave mode.

156

TwoWire::write()

 This function is used to put data from source buffer to internal transmit FIFO (for both master and slave). Start
 write operation on 2-wire bus (for 2-wire master only).

Syntax
 #include “Wire.h”
 size_t num = Wire.write(data, size);
Parameters
 uint8_t *data

 The 1st argument is a pointer points to an array of unsigned 8-bit data.
 size_t size
 The 2nd argument is a value to specify the number of data in bytes should be pushed to transmit FIFO.

Returns
 In case of master mode, a value of type size_t to indicate the number of data transmitted successfully. In case of
 slave mode, this value only reflects the number of data to be put to transmit FIFO.

Remarks
 The behavior of this function differs for 2-wire master and 2-wire slave mode. In master mode, calling this

 function will put data into transmit FIFO followed by immediate data transmission on 2-wire bus. For slave mode,

 there is no data transmission.

157

TwoWire::available()

 This function is used to query number of data received.

Syntax
 #include “Wire.h”
 int num = Wire.available();
Parameters
 None
Returns

 An integer value to indicate number of data in bytes received in receive FIFO.
Remarks
 None

158

TwoWire::read()

 This function is used to get the data from received FIFO.

Syntax
 #include “Wire.h”
 Int data = Wire.read();
Parameters
 None
Returns

 An integer value equals to the 1st unread byte of data in receive FIFO. If there is no unread data in FIFO, integer
 ‘-1’ will be returned.

Remarks
 None

159

TwoWire::onReceive()

 This function is used to hook the user-defined function which will be executed when data written by remote
 host is received.

Syntax
 #include “Wire.h”
 Wire.onReceive(function);
Parameters
 void (*function)(void)
 The 1st argument is a pointer pointing to the entry of user-defined function.
Returns

 None
Remarks

 User may hook their function for post-processing after moving received data from RX_FIFO (see “section 4-2” for
 more detail) to internal buffer.

160

TwoWire::onRequest()

 This function is used to hook the user-defined function which will be executed when remote host request to
 transmit data.

Syntax
 #include “Wire.h”
 Wire.onRequest(function);
Parameters
 void (*function)(void)
 The 1st argument is a pointer points to the entry of user-defined function.
Returns

 None
Remarks

 User may hook their function for pre-processing before moving data from internal buffer to TX_FIFO (see
 “section 4-2” for more detail).

161

TwoWire::isr()

 This function is used for 2-wire slave interface. See“section 4-2”for more detail.

Syntax
 #include “Wire.h”
 Wire.isr();
Parameters
 None
Returns

 None
Remarks

 When any interrupt associated with 2-wire slave is triggered, ISR dispatcher “hwISRFunc()” defined in
 “wiring_intr.c”will be entered, and the dispatcher will call “isrWireSlaveFunc ()”, which is defined in “Wire.cpp”.

162

3.3.18 HardwareSerial

HardwareSerial

Class related to UART interface.

Public Member Functions
 HardwareSerial
 void config(uint8_t word_length, uint8_t stop_bit, uint8_t party_check)
 void begin(uint32_t baudrate)
 void end(void)
 int available(void)
 int read(void)
 int peek(void)
 void flush(void)
 size_t write(uint8_t value)
 size_t write(uint8_t *buffer, size_t size)
 size_t print(const char str[])
 void isrRx(void)
 void taskTx(void)

Remarks
 None

163

HardwareSerial::HardwareSerial()

 The constructor of class HardwareSerial.

Syntax
 #include “HardwareSerial.h”
 HardwareSerial object= HardwareSerial(port);
Parameters
 uint8_t port
 The 1st argument is an 8-bit unsigned integer to specify which UART port is used.
Returns

 None
Remarks

 Two hardware UARTs are supported. See below table for pin out for UART 1 and 2.

Port Direction Pin Out GNSS Mode MCU Mode

UART 1
RX N/A Reserved for

NMEA
Serial1

TX TXD0

UART 2
RX GPIO1

Serial Serial
TX GPIO2

 Two pre-instantiated UART objects, Serial and Serial1, have been defined in “HardwareSerial.cpp” by following

 code:

 HardwareSerial Serial = HardwareSerial(CONSOLE_PORT_ID);
 HardwareSerial Serial1 = HardwareSerial(NMEA_PORT_ID);

 When binary image links with GNSS library, UART 1will be used to output NMEA messages and communication

 of binary commands, user SHOULD avoid using UART1 in this case.

 When binary image links MCU mode, the UART 1 can be released to use as Serial1 through the micro USB

 connector. On the pins, only UART 1 TX is accessible. Due to 3.3V LVTTL nature of the UART, an external UART to

 RS232 level shifter may be needed to connect to traditional COM port of computer.

164

HardwareSerial::config()

 This function is used to configure UART parameters.

Syntax
 #include “HardwareSerial.h”
 Serial.config(word_length, stop_bit, party_check);

 Serial1.config(word_length, stop_bit, party_check);
Parameters
 uint8_t word_length
 The 1st argument is an 8-bit unsigned integer to specify number of bitsin one word, the possible values are listed

 below:
 STGNSS_UART_5BITS_WORD_LENGTH
 STGNSS_UART_6BITS_WORD_LENGTH
 STGNSS_UART_7BITS_WORD_LENGTH
 STGNSS_UART_8BITS_WORD_LENGTH

 uint8_t stop_bit
 The 2nd argument is an 8-bit unsigned integer to specify number of stop bits, the possible values are listed in
 below:
 STGNSS_UART_1STOP_BITS
 STGNSS_UART_2STOP_BITS
 uint8_t party_check

 The 3rd argument is an 8-bit unsigned integer to specify if party check is needed; the possible values are listed in
 below:

 STGNSS_UART_NOPARITY
 STGNSS_UART_ODDPARITY
 STGNSS_UART_EVENPARITY
Returns

 None
Remarks

 This function won’t perform physical configuration to hardware, instead, it just set the values to internal
 variables. If this function is not called, the default parameters for UART is 8-N-1 (8-bit word length, no party
 check, 1 stop bit).

165

HardwareSerial::begin()

 This function is used to configure UART baud rate and perform H/W initialization.

Syntax
 #include “HardwareSerial.h”
 Serial.begin(uint32_t baudrate);

 Serial1.begin(uint32_t baudrate);
Parameters
 uint32_tbaudrate

 The 1st argument is a 32-bit unsigned integer to specify the baud rate;valid range is from 4,800 to 460,800. If this
 argument is omitted, the default baud rate is determined by compiler configuration “build.baudrate” defined in
 “boards.txt”.

Returns
 None

Remarks

 None

166

HardwareSerial::end()

 This function is used to disable the object without destroying it, so user may reactivate it later by calling begin()
 again.

Syntax
 #include “HardwareSerial.h”
 Serial.end();

 Serial1.end();
Parameters
 None
Returns

 None
Remarks

 None

167

HardwareSerial::available()

 This function is used to get the number of unread data received in receive buffer.

Syntax
 #include “HardwareSerial.h”
 int num = Serial.available();

 int num = Serial1.available();
Parameters
 None
Returns

 A value of type size_t to indicate number of unread data in receive buffer.
Remarks

 None

168

HardwareSerial::read()

 This function is used to get the 1stunread data from receive buffer.

Syntax
 #include “HardwareSerial.h”
 intdata = Serial.read();

 intdata = Serial1.read();
Parameters
 None
Returns

 An integer value equals to 1st byte of unread data from internal receive buffer. If no unread data exists or object
 is not enabled, -1 will be return.

Remarks

 None

169

HardwareSerial::peek()

 This function is used to peek the 2nd unread data from receive buffer without change anything.

Syntax
 #include “HardwareSerial.h”
 int data = Serial.peek();

 int data = Serial1.peek();
Parameters
 None
Returns

 An integer value equals to the 2nd byte of unread data from internal receive buffer. If number of unread datain
 byte is less than 2 or object is not enabled, -1 will be return.

Remarks

 None

170

HardwareSerial::flush()

 This function is used to move all data in transmit buffer to H/W transmit FIFO immediately.

Syntax
 #include “HardwareSerial.h”
 Serial.flush();

 Serial1.flush();
Parameters
 None
Returns

 None
Remarks

 None

171

HardwareSerial::write()

 This function is used to put one byte data to the internal transmit buffer.

Syntax
 #include “HardwareSerial.h”
 size_t num = Serial.write(value);

 size_t num = Serial1.write(valie);
Parameters
 uint8_t value
 The 1st argument is an 8-bit unsigned integer for one byte data to be transmitted.
Returns

 ‘1’ in case of the value was copied to transmit buffer or otherwise ‘0’.
Remarks

 This function will triggeran interrupt for UART hardware TX FIFO empty, that is, an interrupt will be generated
 when the hardware TX FIFO is empty and the “HardwareSerial::taskTx()” will be executed to move data from
 internal buffer to hardware TX FIFO.

172

HardwareSerial::write()

 This function is used to put one byte data to the internal transmit FIFO.

Syntax
 #include “HardwareSerial.h”
 size_t num = Serial.write(data, size);

 size_t num = Serial1.write(data, size);
Parameters
 uint8_t *data
 The 1st argument is a pointer points to an array of unsigned 8-bit integers which contains the data to be

 transmitted.
 size_t size
 The 2nd argument is number of data in bytes which this function will copy from the data array to internal

 transmit FIFO.
Returns

 A value of type size_t to indicate the number of data in bytes has been written to the internal transmitFIFO.
Remarks

 This function will trigger an interrupt for UART hardware TX FIFO empty, that is, an interrupt will be generated
 when the hardware TX FIFO is empty and the “HardwareSerial::taskTx()” will be executed to move data from I
 nternal buffer to hardware TX FIFO.

173

HardwareSerial::print()

 This function is used to copy the contents of a string to the internal transmit FIFO.

Syntax
 #include “HardwareSerial.h”
 size_t num = Serial.print(str);

 size_t num = Serial1.print(str);
Parameters
 const char str[]
 The 1st argument is a pointer to a string-type buffer. A string-type means there is 1-byte NULL terminator, 0x0 or

 ‘\0’, appended to the end of characters.
Returns

 A value of type size_t to indicate the size of str excluding the 1-byte NULL terminator.
Remarks

 This function will trigger an interrupt for UART hardware TX FIFO empty, that is, an interrupt will be generated
 when the hardware TX FIFO is empty and the “HardwareSerial::taskTx()” will be executed to move data from
 internal buffer to hardware TX FIFO.

174

HardwareSerial::isrRx()

 This function is used to move data in H/W receive FIFO to class’ internal receive buffer.

Syntax
 #include “HardwareSerial.h”
 Serial.isrRx();

 Serial1.isrRx();
Parameters
 None
Returns

 None
Remarks

 Normally the UART receiving circuitry will receive incoming data from remote host and put them into hardware
 RX FIFO waiting for CPU to read out, an interrupt will be generated automatically if RX FIFO is not empty for over
 a specified period. In this case the dispatcher, hwISRFunc(), which is defined in “wiring_intr.c”will be executed,
 followed by executing “isrSerialFunc()”, and the “HardwareSerial::isrRx()” will be executed.

175

HardwareSerial::taskTx()

 This function is used to move data in internal transmit buffer to H/W transmit FIFO.

Syntax
 #include “HardwareSerial.h”
 Serial.taskTx();

 Serial1.taskTx();
Parameters
 None
Returns

 None
Remarks

 Normally this function will be called by “taskSerialFunc()” insidethe interrupt service routine “hwISRFunc()”when
 the UART hardware TX FIFO is empty. This function may be called many times until there is no more data in
 internal transmit buffer, in this case this function will turn off the interrupt mechanism for the UART hardware
 TX FIFO empty.

176

3.3.19 Analog

Analog

Group for PWM and ADC.

Functions
 void analogPWMPeriod(uint8_t pin, uint32_t value)
 void analogPWMFreq(uint8_t pin, uint32_t value)
 analogWrite(uint8_t pin, uint16_t value)
 void analogADCClock(uint8_t pin, uint32_t value)*1
 uint16_t analogRead(uint8_t pin)*1

Remarks
 *1: Commercial GPS/GNSS chipset typically has 2 ~ 5 bit ADC to sampling IF signal for baseband processing; higher bit ADC is

non-essential for GNSS chipset.Yet an experimental 10bit 200Ksps ADC test block is embedded into Venus822A. The ADC is not

intended as standard feature of Venus822A nor NavSpark. No testing of ADC is done at chip level, testing capable of detecting 0V and

3V is done only at NavSpark board level production. No ENOB, SFDR, SINAD, INL, DNL characteristics are available for the ADC. The

ADC related functions are included here only for those who wish to use it for experiment at his own risk, and will not hold seller of the

product nor SkyTraq responsible for ADC function not working to expectation or don’t work at all.

177

analogPWMPeriod()

 The function is used to configure PWM output period.

Syntax
 #include “wiring_analog.h”
 analogPWMPeriod(pin, value);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer to specify which GPIO pin should be configured as a PWM output,

 currently only 1 PWM supported for NavSpark, and this argument must be 20.
 uint32_t value
 The 2nd argument is a 32-bit unsigned integer to specify period of one cycle in nanoseconds during which PWM
 generates ‘H’ and ‘L’ levels. The allowed range for this value is from 1,000 to 500,000,000; equivalently 1MHz ~
 2Hz.

Returns
 None

Remarks

 The PWM won’t be configured physically until calling “analogPWMWrite()”.

178

analogPWMFreq()

 The function is used to configure PWM output frequency.

Syntax
 #include “wiring_analog.h”
 analogPWMFreq(pin, value);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer to specify which GPIO pin should be configured as a PWM output,

 currently NavSpark supports only 1 PWM and this argument must be 20.
 uint32_t value
 The 2nd argument is a 32-bit unsigned integer to specify frequency in Hz of 50% duty cycle pulse. The allowed
 range for this value is from 2 to 1,000,000.

Returns
 None

Remarks

 The PWM won’t be configured physically until calling “analogPWMWrite()”.

179

analogWrite()

 The function is used to configure the desired duty cycle of PWM output.

Syntax
 #include “wiring_analog.h”
 analogWrite(pin, value);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer to specify which GPIO pin should be configured as a PWM output,

 currently NavSpark supports only 1 PWM and this argument must be 20.
 uint16_t value
 The 2nd argument is a 16-bit unsigned integer to specify the duty cycle. 0 is for 0% duty cycle and 255 is for 100%.

Returns
 None

Remarks

 After calling this function, the configuration of H/W is done immediately and the PWM waveform appears on
 GPIO pin 20.

180

analogADCClock()*1

 The function is used to configure the sampling frequency for ADC.

Syntax
 #include “wiring_analog.h”
 analogADCClock(pin, value);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer to specify which ADC pin to be configured. Currently only one ADC

 pin on NavSpark, and this argument must be 0.
 uint32_t value
 The 2nd argument is a 32-bit unsigned integer to specify the sampling clock rate used for ADC. The suggested
 range is from 200kHz to 10MHz.

Returns
 None

Remarks

 *1: Commercial GPS/GNSS chipset typically has 2 ~ 5 bit ADC to sampling IF signal for baseband processing; higher bit ADC is

non-essential for GNSS chipset.Yet an experimental 10bit 200Ksps ADC test block is embedded into Venus822A. The ADC is not

intended as standard feature of Venus822A nor NavSpark. No testing of ADC is done at chip level, testing capable of detecting 0V and

3V is done only at NavSpark board level production. No ENOB, SFDR, SINAD, INL, DNL characteristics are available for the ADC. The

ADC related functions are included here only for those who wish to use it for experiment at his own risk, and will not hold seller of the

product nor SkyTraq responsible for ADC function not working to expectation or don’t work at all.

181

analogRead()*1

 The function is used to read ADC measurement value.

Syntax
 #include “wiring_analog.h”
 uint16_t value = analogRead(pin);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer to specify which ADC pin to be read. Only one ADC pin on

 NavSpark,and this must be 0.
Returns

 A 16-bit unsigned integer to indicate measurement result of ADC. The range of value is from 0 to 1023.
Remarks

 ADC is 10-bit. When this function is called, one measurement is sampled and value returned. It takes about 20

 CPU clock cycles for a single measurement.

 *1: Commercial GPS/GNSS chipset typically has 2 ~ 5 bit ADC to sampling IF signal for baseband processing; higher bit ADC is

non-essential for GNSS chipset.Yet an experimental 10bit 200Ksps ADC test block is embedded into Venus822A. The ADC is not

intended as standard feature of Venus822A nor NavSpark. No testing of ADC is done at chip level, testing capable of detecting 0V and

3V is done only at NavSpark board level production. No ENOB, SFDR, SINAD, INL, DNL characteristics are available for the ADC. The

ADC related functions are included here only for those who wish to use it for experiment at his own risk, and will not hold seller of the

product nor SkyTraq responsible for ADC function not working to expectation or don’t work at all.

182

3.3.20 Digital

Digital

Group for digital I/O functions.

Functions
 unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout)
 void pinMode(uint8_t pin, uint8_t mode)
 void digitalWrite(uint8_t pin, uint8_t val)
 int digitalRead(uint8_t pin)
 void attachInterrupt(uint8_t pin, void (*taskFunc)(void), int mode)
 void detachInterrupt(uint8_t pin)
 void interrupts(void)
 void noInterrupts(void)
 void hwISRFunc(void)

Remarks
 None

183

pulseIn()

 The function is used to measure duration of a pulse.

Syntax
 #include “wiring_pulse.h”
 unsigned long time = pulseIn(pin, state, timeout);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer to specify which GPIO pin is used to measure the pulse.

 uint8_tstate
 The 2nd argument is an 8-bit unsigned integer to specify which level (HIGH or LOW) to be measured.
 unsigned long timeout
 The 3rd argument is an unsigned long integer to specify the timeout value in milliseconds.

Returns
 An unsigned long integer to indicate the time period for the pulse detected with unit in millisecond. Its value
 depends on following situations:
 In case no pulse matching expected stateis found, this value equals to 0.
 In case a pulse matching expected state is detected but it lasted longer thantimeoutperiod, this value

equals timeout.
 In case a pulse matching expected state is detected, shorter than timeout period,then this value

represent duration of the pulse.
Remarks

 None

184

pinMode()

 The function is used to configure I/O direction of GPIO pin.

Syntax
 #include “wiring_digital.h”
 pinMode(pin, mode);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer selecting which GPIO pin to be configured. The possible values are

 defined in “pins_arduino.h”.
 uint8_tmode
 The 2nd argument is an 8-bit unsigned integer configuring mode of the selected GPIO pin. There are three
 possible values:
 INPUT
 OUTPUT
 SPECIAL
 INPUT_PULLUP (Not supported by NavSpark)
 Since many GPIO pins are multiplexed with other function such as SPI or 2-wire, “SPECIAL” is defined as a state
 for selecting those special functions.

Returns
 None

Remarks

 None

185

digitalWrite()

 The function is used to set output level of GPIO pin.

Syntax
 #include “wiring_digital.h”
 digitalWrite(pin, val);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer selecting which GPIO pin to be set. The possible values are defined

 in “pins_arduino.h”.
 uint8_tval
 The 2nd argument is an 8-bit unsigned integer specifying the output level (HIGH or LOW) of the selected GPIO pin.

Returns
 None

Remarks

 If user did not configure the GPIO pin in OUTPUT mode, this function will return directly without any effect.

186

digitalRead()

 The function is used to get the logic level on GPIO pin.

Syntax
 #include “wiring_digital.h”
 int val = digitalRead(pin);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer selecting which GPIO pin to be read. The possible values are

 defined in “pins_arduino.h”.
Returns

 An integer representing logic level on the GPIO pin. There are three cases:
 HIGH：voltage greater than 2.7 volt is present on the selected pin
 LOW：voltage less than 0.3 volts is present on the selected pin
 -1：the selected pin is not in INPUT mode

Remarks

 None

187

attachInterrupt()

 The function is used to set an ISR for specified GPIO pin.

Syntax
 #include “wiring_intr.h”
 attachInterrupt(pin, taskFunc, mode);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer to select which GPIO pin to be hooked with. The possible values

 are defined in “pins_arduino.h”.
 void (*taskFunc)(void)
 The 2nd argument is entry point to the user-provided function which will be called when the specified trigger

 happens on the GPIO pin.
 int mode
 The 3rd argument is an integer to specify how the ISR will be trigged. For now RISING and FALLING modes are

 supported.
Returns
 None

Remarks

 This function will return directly without any effect if the selected GPIO pin is not in INPUT mode.

188

detachInterrupt()

 The function is used to remove an ISR for selected GPIO pin.

Syntax
 #include “wiring_intr.h”
 detachInterrupt(pin);
Parameters
 uint8_t pin
 The 1st argument is an 8-bit unsigned integer to select which GPIO pin to be removed. The possible values are

 defined in “pins_arduino.h”.
Returns
 None

Remarks

 None

189

interrupts()

 The function is used to enable all ISRs for peripherals.

Syntax
 #include “wiring_intr.h”

 interrupts(void);
Parameters
 None
Returns
 None

Remarks

 This function will enable the interrupt for peripherals, for now there are four peripherals can be turned on by

 this function: GNSS, TIMER, UART and GPIO.

190

noInterrupts()

 The function is used to disable all ISRs for peripherals.

Syntax
 #include “wiring_intr.h”

 noInterrupts(void);
Parameters
 None
Returns
 None

Remarks

 This function will disable the interrupt for peripherals, for now there are four peripherals can be turned off by

 this function: GNSS, TIMER, UART and GPIO.

191

3.3.21 SDClass

SDClass

The SD library allows for reading from and writing to SD card.

Public Member Functions
 SDClass
 boolean begin()
 boolean exist(const char *filepath)
 boolean mkdir(const char *filepath)
 File open(const char *filepath, uint_8 mode)
 boolean remove(const char *filepath)
 boolean rmdir(const char *filepath)

Remarks
 None

192

SDClass::SDClass()

 The constructor of class SDClass.

Syntax
 #include “SD.h”
 SDClass obj;
Parameters
 None
Returns

 None.
Remarks

 A pre-instantiated SDClass objects, SD have been defined in “SD.cpp” by following code:

 SDClass SD;

193

SDClass::begin()

 Initialize the SD library and card. This begins of the SPI bus (digital pins 29, 30, 31 on NavSpark boards) and the
 chip select pin (pin 28 on NavSpark boards).

Syntax
 #include “SD.h”
 SD.begin();
Parameters
 None
Returns

 Boolean true on success or boolean false on failure.
Remarks

 None

194

SDClass::exist()

 Tests whether a file or directory exists on the SD card.

Syntax
 #include “SD.h”
 bool fileExist = SD.exist(filename);
Parameters
 const char *filename

The name of the file to test for existence, which can include directories(delimited by forward-slashes, /)
Returns

 Boolean true if the file or directory exists, bool false if not.
Remarks

 None

195

SDClass::mkdir()

 Create a directory on the SD card.

Syntax
 #include “SD.h”
 SD.mkdir (filename);
Parameters
 const char *filename

The name of the directory to create (delimited by forward-slashes, /)
Returns

 Boolean true if the creation of the directory succeeded, else boolean false if not.
Remarks

 None

196

SDClass::open()

Opens the file whose name is specified. If the file is opened for writing, it will be created if it doesn't already exist
(but the directory containing it must already exist).

Syntax
 #include “SD.h”
 File logFile = SD.open(filename, mode);
Parameters
 const char *filename

The name the file to open, which can include directories (delimited by forward slashes, /)

uint8_t mode (optional)
The mode in which to open the file, defaults to FILE_READ - byte. one of:
FILE_READ: open the file for reading, starting at the beginning of the file.
FILE_WRITE: open the file for reading and writing, starting at the end of the file.

Returns
A File object referring to the opened file; if the file couldn't be opened, this object will evaluate to false in a
boolean context, i.e. you can test the return value with "if (f)".

Remarks
 None

197

SDClass::remove()

 Remove a file from the SD card.

Syntax
 #include “SD.h”
 SD.remove(filename);
Parameters
 const char *filename

The name of the file to remove, which can include directories (delimited by forward-slashes, /)
Returns

Boolean true if the removal of the file succeeded, boolean false if not. (if the file didn't exist, the return value is
unspecified).

Remarks

 None

198

SDClass::rmdir()

 Remove a directory from the SD card. The directory must be empty.

Syntax
 #include “SD.h”
 SD.rmdir(foldername);
Parameters
 const char *foldername

The name of the directory to remove, with sub-directories separated by forward-slashes, /
Returns

Boolean true if the removal of the directory succeeded, boolean false if not. (if the directory didn't exist, the
return value is unspecified).

Remarks

 None

199

3.3.22 File

File

The File class allows for reading from and writing to individual files on the SD card.

Public Member Functions
 int available()
 void close()
 void flush()
 int peek()
 uint32_t position()
 size_t print(const char* str)
 size println(const char* str)
 boolean seek(uint32_t pos)
 uint32size()
 int read()
 size_t write(uint8_t)

Remarks
 None

200

File::available()

 Check if there are any bytes available for reading from the file.

Syntax
 #include “SD.h”
 file.available()
Parameters
 File file

An instance of the File class (returned by SD.open())
Returns

 The number of bytes available (int).
Remarks

 None

201

File::close()

 Close the file, and ensure that any data written to it is physically saved to the SD card.

Syntax
 #include “SD.h”
 file.close();
Parameters
 File file

An instance of the File class (returned by SD.open())
Returns

 None
Remarks

 None

202

File::flush()

Ensures that any bytes written to the file are physically saved to the SD card. This is done automatically when the
file is closed.

Syntax
 #include “SD.h”
 file.frush();
Parameters
 File file

An instance of the File class (returned by SD.open())
Returns

 None
Remarks

 None

203

File::peek()

Read a byte from the file without advancing to the next one. That is, successive calls to peek() will return the same
value, as will the next call to read()..

Syntax
 #include “SD.h”
 file.peek();
Parameters
 File file

An instance of the File class (returned by SD.open())
Returns

 The next byte (or character), or -1 if none is available.
Remarks

 None

204

File::position()

 Get the current position within the file (i.e. the location to which the next byte will be read from or written to).

Syntax
 #include “SD.h”
 file.position();
Parameters
 File file

An instance of the File class (returned by SD.open())
Returns

 The position within the file (unsigned long)the position within the file (unsigned long)
Remarks

 None

205

File::print()

Print data to the file, which must have been opened for writing. Prints numbers as a sequence of digits, each an
ASCII character (e.g. the number 123 is sent as the three characters '1', '2', '3').

Syntax
 #include “SD.h”
 file.print(data);

file.print(data, BASE);
Parameters
 File file

An instance of the File class (returned by SD.open())

type data
The data to print (type can be char, byte, int, long, or string)

int BASE (optional)
The base in which to print numbers: BIN for binary (base 2), DEC for decimal (base 10), OCT for octal (base 8),
HEX for hexadecimal (base 16).

Returns
 print() will return the number of bytes written, though reading that number is optional

Remarks

 None

206

File::println()

Print data, followed by a carriage return and newline, to the File, which must have been opened for writing.
Prints numbers as a sequence of digits, each an ASCII character (e.g. the number 123 is sent as the three
characters '1', '2', '3')..

Syntax
 #include “SD.h”
 file.println();

file.println(data);
file.print(data, BASE);

Parameters
 File file

An instance of the File class (returned by SD.open())

type data
The data to print (type can be char, byte, int, long, or string)

int BASE (optional)
The base in which to print numbers: BIN for binary (base 2), DEC for decimal (base 10), OCT for octal (base 8),
HEX for hexadecimal (base 16).

Returns
 println() will return the number of bytes written, though reading that number is optional.

Remarks

 None

207

File::seek()

 Seek to a new position in the file, which must be between 0 and the size of the file (inclusive)..

Syntax
 #include “SD.h”
 file.seek(pos);
Parameters
 File file

An instance of the File class (returned by SD.open())

uint32_t pos
The position to which to seek (unsigned long)

Returns
 Boolean true for success, boolean false for failure.

Remarks

 None

208

File::size()

Get the size of the file.
Syntax
 #include “SD.h”
 file.size();
Parameters
 File file

An instance of the File class (returned by SD.open())
Returns

 The size of the file in bytes (unsigned long)
Remarks

 None

209

File::read()

Read a byte from the file.
Syntax
 #include “SD.h”
 file.read();
Parameters
 File file

An instance of the File class (returned by SD.open())
Returns

 The next byte (or character), or -1 if none is available.
Remarks

 None

210

File::read()

Write data to the file.
Syntax
 #include “SD.h”
 file.write(data);

file.write(buf, len);
Parameters
 File file

An instance of the File class (returned by SD.open())

type data
The data to print (type can be char, byte, int, long, or string)

char[] buf
An array of characters or bytes

int len
The number of elements in buf

Returns
 write() will return the number of bytes written, though reading that number is optional.

Remarks

 None

211

4. Introduction to SPI and 2-wireSlavesModes

4.1 SPI Slave

SPI circuit has following internal registers. How to use them will be described later.

3 2 1 0
MISC_REG RBUF_STS_REG WBUF_SET_REG MAIN_REG
.

RBUF_REG (3 ~ 0)
RBUF_REG (7 ~ 4)

 RBUF_REG (11 ~ 8)
 RBUF_REG (15 ~ 12)

 WBUF_REG (3 ~ 0)
 WBUF_REG (7 ~ 4)

 WBUF_REG (11 ~ 8)
 WBUF_REG (15 ~ 12)

RBUF related registers are to be read by the SPI host.

WBUF related registers are to be written by the SPI host.

MAIN_REG
Bit# Description
7 Indicate if a ‘1’ was written to reset bit (bit-3) by remote SPI host. This bit is cleared

by calling “v8_spi_slave_reset_intr_clr()” in “wiring_intr.c” and user may add his/her
ISR to handle this event in “SPI::isr()” defined in “SPI.cpp”.

6 Indicate if remote SPI host has completed reading data from RBUF_REG. This bit is
cleared by calling “v8_spi_slave_s2m_buffer_empty_intr_clr()” in wiring_intr.c” and
user can hook his/her ISR to handle this event by calling “SPI::attachInterrupt()”
defined in “SIP.cpp”.

5 Indicate if remote SPI host has completed writing data to WBUF_REG. This bit is
cleared by calling “v8_spi_slave_m2s_buffer_full_intr_clr()” in wiring_intr.c” and user
can hook his/her ISR to handle this event by calling “SPI::attachInterrupt()” defined in
“SPI.cpp”.

4 Reserved.
3 Remote host writes ‘1’ to this bit to let SPI receiver enters reset mode, an interrupt

will also be generated. This bit will automatically change to ‘0’ when the reset action
is done.

2 NavSpark writes‘1’ to this bit to indicate SPI host the RBUF_REG is ready to be read
by calling “SPI::enableBufferForHostRead()”. After host completes reading specified

212

number of data, SPI receiver will trig an interrupt and set bit-6 to ‘1’. User can add
his/her ISR by calling “SPI::attachInterrupt()” and also call
“SPI::disableBufferForHostRead()” to notify SPI host no more data is valid.

1 NavSpark writes ‘1’ to this bit to notify remote host the WBUF_REG is ready to be
written by calling “SPI::enableBufferForHostWrite()”, this bit will automatically clear
to ‘0’ when remote host writes specified number of data into WBUF_REG. User can
add his/her ISR for this event by calling “SPI::attachInterrupt()”.

0 Reserved.

WBUF_SET_REG
Bit# Description
7:0 SPI host writes the number of bytes of data to be written to WBUF_REG in following

transaction.

RBUF_STS_REG
Bit# Description
7:0 NavSpark writes data to be read to RBUF_REG followed by writing the number of

bytes of data in RBUF_REG to this register, the SPI host may read this register prior to
issuing a buffer read.

The SPI slave only accepts byte-aligned data and violation to this rule may cause unpredictable result and a reset

command (issued by remote host) could be used to recover this error. Also the bit-order is MSB first in NavSpark,

unchangeable. To access above registers from remote SPI host, the 1st byte of data is regarded as “command” and

shown in below table.

Action of SPI host Data on SPI bus
To write MAIN_REG 0x80 + 1-byte-data
To write WBUF_SET_REG 0x81 + 1-byte-data
To write RBUF_STS_REG 0x82 + 1-byte-data
To write MISC_REG 0x83 + 1-byte-data
To read MAIN_REG 0xC0 + 1-byte-data
To read WBUF_SET_REG 0xC1 + 1-byte-data
To read RBUF_STS_REG 0xC2 + 1-byte-data
To read MISC_REG 0xC3 + 1-byte-data
To write WBUF_REG 0x81 + 1-byte-count / 0x88 + N-byte-wdata (N<=16)
To read RBUF_REG 0xC2 + 1-byte-count / 0xC8 + N-byte-rdata (N<=16)

Normally remote SPI host communicates with NavSpark by write/read data to/from the WBUF/RBUF registers. See

“demo_spi_master.ino” and “demo_spi_slave.ino” for more detail.

213

4.2 NavSpark as a 2-wire slave

Like SPI slave interface, NavSpark supports 2-wire slave interface and the 3rd party’s ASIC could communicate with

NavSpark by configuring itself as 2-wire host and NavSpark as slave. To gain the maximum flexibility NavSpark defines

following internal registers and how to use them will be described later

GPREG0
GPREG1
GPREG2
GPREG3
GPREG4
GPREG5
GPREG6
GPREG7
CTRL

There are 8 registers, GPREG0 ~ GPREG7,each 8-bit in width, used for data exchange between NavSpark and remote

host. They are divided into two parts: the upper part is for NavSpark to write data to it and remote 2-wire host can read

from it; the lower part is for NavSpark to read data written by remote 2-wire host. Currently NavSpark divides these

registers into two equal parts and user can change the size of each part by modify the following parameters defined in

“TwoWire.h”.

#define TWOWIRE_SLAVE_TX_FIFO_BASE 0

#define TWOWIRE_SLAVE_TX_FIFO_SIZE 4

#define TWOWIRE_SLAVE_RX_FIFO_BASE 4

#define TWOWIRE_SLAVE_RX_FIFO_SIZE 4

The last register implemented for NavSpark as 2-wire slave is CTRL register which is used to exchange the control

information between NavSpark and remote host.

CTRL
Bit# Description
7:5 NavSpark writes the number of data written to TX_FIFO in this field.
4;2 Host writes the number of data written to RX_FIFO in this field.
1 NavSpark writes ‘1’ to this bit to notify host to read data from TX_FIFO, and host

writes ‘0’ to this bit to notify NavSpark can put new data to TX_FIFO. When this bit is
‘1’ and host writes ‘0’ to this bit, an internal interrupt will be trigged in NavSpark.

SLAVE_TX_FIFO

SLAVE_RX_FIFO

214

0 Host writes ‘1’ to this bit to notify NavSpark to read data written in RX_FIFO, and
NavSpark writes ‘0’ to this bit to notify host to write new data to RX_FIFO. When
host writes ‘1’ to this bit, will trig an internal interrupt in NavSpark.

From view point of the 2-wire host, the register GPREG0 is addressed as offset 0 of NavSpark, GPREG1 is addressed as

offset 1, and CTRL is addressed as offset 8. NavSpark has implemented an internal pointer to one of these 9 registers by

which current read/write operation issued from host will be applied to, this pointer is forced to 0 after power-on reset.

Basically the remote host can access NavSpark by following ways. Note that words in blue are driven by host and words

in red are driven by NavSpark.

ST(1) + DEV_ADDR(7) + W(1) + ACK(1) + OFFSET(8) + ACK(1) + DATA(8) + ACK(1) + DATA(8) + … + ACK(1) + SP(1)

ST(1) + DEV_ADDR(7) + W(1) + ACK(1) + OFFSET(8) + ACK(1) + ST(1) + DEV_ADDR(7) + R(1) + DATA(8) + ACK(1) + DATA(8)

+ … + NACK(1) + SP(1)

ST(1) + DEV_ADDR(7) + R(1) + DATA(8) + ACK(1) + DATA(8) + … + NACK(1) + SP(1)

In the 1st case, the “DATA” will be written to the registers starting from the offset specified by “OFFSET” one by one. The

NavSpark will auto-increment the internal pointer to next register after writing is done.

In the 2nd case, the 2-wire host informs NavSpark to move the internal pointer to registers specified by “OFFSET” and

begin reading, NavSpark will respond putting“DATA” one by one to 2-wire bus.

In the 3rd case, the 2-wire host read the “DATA” directly from offset pointed by internal pointer.

215

5. Structure Reference
All the structures used in NavSpark can be found in the source files under directory
“hardware\arduino\leon\cores\arduino“. Most of them are put in “sti_gnss_lib.h“.

6. Define Reference

All the defines used in NavSpark can be found in source files which are put in following directories.
 “hardware\arduino\leon\cores\arduino“
 “hardware\arduino\leon\variants\venus822\pins_arduino.h“

216

Change Log

Version 0.4, Dec 14, 2015

1. Add new members, SPIClass and TwoWire

2. Add new members, SDClass and File

Version 0.3, July 23, 2014

1. Change the altitude stored in GNSSAltitude to be MSL altitude which is same as output in NMEA.

2. Add a new member, GNSSDOP, in class GNSS.

3. Add a new member, GNSSGeoSeparation, in GNSS.

Version 0.2, May 22, 2014

1. PWM minimum frequency changed from 1Hz to 2Hz

Version 0.1, May 16, 2014

1. Initial release

The information provided is believed to be accurate and reliable. These materials are provided to customers and may be used for informational purposes only. No

responsibility is assumed for errors or omissions inthese materials, or for its use. Changes to specification can occur at any time without notice.

These materials are provides “as is” without warranty of any kind, either expressed or implied, relating to sale and/or use including liability or warranties relating to fitness for a

particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. No warrant on the

accuracy or completeness of the information, text, graphics or other items contained within these materials. No liability assumed for any special, indirect, incidental, or

consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

The product is not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of

failure of the product.

	1. Introduction
	2. Programmer Guide
	2.1 Overview
	2.2 Using the NavSpark API

	3. NavSpark API Reference
	3.1 Data Type
	3.2 API List
	3.3 Descriptions to API
	3.3.1 GNSSParam
	3.2.2 GNSS
	3.3.3 GNSSDate
	3.3.4 GNSSTime
	3.3.5 GNSSLocation
	3.3.6 GNSSAltitude
	3.3.7 GNSSGeoSeparation
	3.3.8 GNSSDOP
	3.3.9 GNSSSpeed
	3.3.10 GNSSCourse
	3.3.11 GNSSSatellites
	3.3.12 GNSSTimeStamp
	3.3.13 Timer
	3.3.14 SPI_MasterSlave
	3.3.15 SPIClass
	3.3.16 TwoWire_MasterSlave
	3.3.17 TwoWire
	3.3.18 HardwareSerial
	3.3.19 Analog
	3.3.20 Digital
	3.3.21 SDClass
	3.3.22 File

	4. Introduction to SPI and 2-wireSlavesModes
	4.1 SPI Slave
	4.2 NavSpark as a 2-wire slave

	5. Structure Reference
	6. Define Reference

